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Decision-Making with Hard Constraints

Autonomous driving with
mixed traffic flow constraints

Power grid with physical
and operational constraints

4G/5G parameter optimization
with load balance constraints

Constrained Optimization

m:gn f(x,0)
s.t.. h(x,0) =0
g(z,0) <0

Parameter
Decision
Objective
Constraints

9

Goals: safe, economic, rea-time decisions )



A Concrete Example in Power Grid Operation

* Minimizing generation cost to serve the load, with an accurate AC model
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Iterative Algorithm vs Machine Learning

\ 4 min f(z,0) >
A 9(z,0) < 0 ’
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0: parameter | x: decisions
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Given 6, update iteratively to pursue Training neural network to predict
optimal solution x, solutions end-to-end

+ x5 =xg —g(xp) * Xp = Fn(0)

« E.g., interior point methods, Gurobi, ... * E.g., supervised training min 2 [1En(8) — x|

nn

Feasible, optimal, but slow Fast, near-optimal, but non-feasible
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Homeomorphism Methods

Motivation: transform complex Our contributions
constrained problem into simple Accelerate iterative algorithms [1]
constraint domain (e.g., ball) »  The first work achieving optimal

convergence rates without expensive
oracles over general convex sets

4

Ensure neural network feasibility [2,3]

» The first work ensuring NN solution
feasibility with bounded opt. gap and low-
complexity over a class of non-convex sets

Homeomorphism '}

* Bijective & Bi-continuous mapping
* Preserve topological structures

Goals: safe, economic, rea-time decisions

[1] C. Liu, E.Liang", M. Chen", “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurlPS 2025. Spotlight.
[2] E.Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML. 2023. 5
[3] E_Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”. JMLR. 2024.



Homeomorphism Methods: Part |

Hom-PGD to Accelerate Iterative Algorithms

[1] C. Liu, E.Liang*, M. Chen", “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurPS 2025. Spotlight.



Key Metrics for Iterative Algorithms

Applicable Scenarios:

* Objective: linear, quadratic, convex,... SDP SOCP[QP
* Constraints: polytope, convex cones,...

Convergence rate: num. of steps to optimum 10°5 Convergence rates
* Sublinear: N = 0(1/¢) o2l & PoR0SCE0e0ec0see0808)
. X
* Linear: N = 0(log1/¢)
= 10-4 I ~{)=Sublinear |
"’f_ X Linear
] -6 ] --%--Quadratic| |
107 :
Per-step cost: xp *1 = xp — g(x}}) '
* Memory cost: store medium variables. 107 ,= |
 Computational cost: 0(n?), 0(n?>) 1010l —% - il

Number of iterations

[1] Boyd S., Vandenberghe L. Convex optimization. Cambridge university press; 2004.



Existing Iterative Algorithms

Second-order methods (Hessian) (L) (o
* Primal-Dual Interior Points (in MOSEK) o U A | 2/
Vf=|0x2| and V? f = 0x20x, 0x3 0x2 0,
High memory & per-step cost - - o
af 2f S 2f
\0x,/ \Hxnﬂxl 0x, 0%, dx2 )

First-order methods (Gradient)
* Projection Gradient Descent (PGD)
* Projection-free Frank-Wolfe (FW)
* Augmented Lagrangian (e.g., ADMM)

yrojection

gradient step

I = [[;l:.l. ; |:|

- F
= Arg |I1I1Lrl:! > ||-|' — L4y |||1

Non-trivial sub-problems

Research Gap: design an algorithm that with low per-iter costs,
matching optimal convergence, working for general convex set



Hom-PGD to Accelerate Iterative Algorithms

PGD Hom-PGD

obj. h(z) = f(v(2)) min h(z) st.ze B
ar. B=1"1K) Z B

| Homeomorphic

E Mapping ¢ N o en
R 1
1 x =9Y(z)
B, | et e
-2 1 2 44 . e T ST
777777777777 @ Initial point
- e T T T T A . . T — T — —
= 5 1 b T } 3 % Optimal point 3 s 0 o 1 3 .
x1 — lteration trajectory z1

1. Construct homeomorphism for general convex set
2. Transform the problem into ball-constrained space

3. Projection gradient descent over ball is easy

[1] C. Liu, E.Liang*, M. Chen", “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurPS 2025. Spotlight.



Gauge Mapping: Homeomorphism for Convex Set

n
»

d(z) = x° + s(x°,z) -z
» Translating by x° € int(C)
» Scaling by s(x°,z) € Ry

* Properties of ®:
» Continuous + Invertible = Homeomorphism
» Bi-Lipschitz — Beneficial for algorithm [4]

 Computation of &:

S(xol Z) = dZ/dl

» Closed-form for common convex sets [1-2]
v’ Linear, quadratic, SOC, LMI.

» Bisection for general compact convex set [3]

[1] Tabas, D., & Zhang, B. Computationally efficient safe reinforcement learning for power systems. IEEE ACC 2022.

[2] Tordesillas, J., How, J. P., & Hutter, M. Rayen: Imposition of hard convex constraints on neural networks. arXiv 2023.

[3] Mhammedi, Z. Efficient projection-free online convex optimization with membership oracle. COLT 2022.

[4] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurlPS 2025. Spotlight.
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Computation of Gauge Mapping

Constraints Formulation Inverse Distance Function

Intersections {g1(z) <0, -+ ,gm(x) <0} kg(z®,v) = 11%11@:}( {kg, (z°,v)}

Linear gr(z)=a'z—-b<0 kg, (z°,v) =

Quadratic go(x)=2'Qr4+a'z-b<0 Kgg (T°,v) = {1/r00t(AQ? Bg,Co)} ™"
Second Order Cone gs(x) = ||AT:1: —|—p\|2 —(a"z+b) <0 Ky, (x°,v) = {1/root(As, Bs,Cs)}+
Linear Matrix Inequality |grr(x) = > @i - Fi + Fo = 0 Kgy, (°,v) = {eig(L" (=S)L)}T

I Notation: z,a € R, b€ R, Q € S”, A € R™™, p € R™, Fy.--- , F,, € R™*™, X € R"™*"
()" = max(-,0)

— I m2— I . . .
3 root(z1, T2, 73) = —2EVE2TATIT3 G otes the quadratic equation solution

2331

*eig(X) = A1, - , An denotes the eigenvalues satisfying det(X — XI) = 0

SAg=v'Qu, Bo=22°"Qu+a'v, Co=2""Qz°+a'z°—b

SAs =(A"v) " (ATv) — (a"v)?, Bs =2(ATz° +p) " (ATv) —2(a"2° +b)(a"v), Cs = (AT z° +
p)' (A'z° +p) — (a'z° +b)

TH=Fo+Y" 2{F, ,H'=L"L,S=Y" uF

[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurlPS 2025. Spotlight.



Computation of Gauge Mapping

1072

Gauge computation (s)

—e— Linear SOC
Quadratic '- LMl
o ____,/.
f X ﬁ\
500 1000 1500 2000 2500 3000

Constraint dimension n

[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurlPS 2025. Spotlight.
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Landscape Analysis and Algorithm Design

* Original Problem: (P)

min f(x) s.t.x€ K. .5)§¢
X ........ \J
~~~~~ )
* Transformed Problem: (H) N
. e
min h(z) st.zebB <.......\.\--@\4

Equivalence between (P) and (H)

Theorem 1: For convex (P) with global
optimum x*, under mild constraint
qualification conditions, any stationary
point z* for (H) is

* aglobal optimum of (H): h(z*) < h(2)
* aglobal optimum of (P): x* = y¥(z")

Algorithm 1 Hom-PGD

Input: initial point zg, problem H with )
and maximum iteration number K
for k = 0to K do

Compute stepsize oy

Update: Zit+1 = HB (Zk — Okah(Zk))
end for
Output: xx = Y (zk)

[1] C. Liu, E.Liang*, M. Chen", “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurPS 2025. Spotlight.



Convergence Rates Analysis : Part |

* Convergence rates [1]:

Theorem 2: Under mild regularity conditions, for compact convex constraint,
Hom-PGD over (H) match the same convergence rates of PGD over (P):

Objective of (P) || Strongly Convex | Convex | Non-Convex
Convergence Rate ||  O(loge™) | O(e™!) | O(e?)

» Reach the optimal convergence rates under unaccelerated settings [2]
> Per-iteration cost of O(n?), without expensive inner optimization

* Extension to structured non-convex settings
> Proximal-PL objective [3]: O(loge~1) rate (match PGD)
> Star-convex constraints [4]: O (e~ %) rate (beyond PGD)

[1] C. Liu, E.Liang*, M. Chen", “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurlPS 2025. Spotlight.

[2] Altschuler JM, Parrilo PA. Acceleration by stepsize hedging: Multi-step descent and the silver stepsize schedule. Journal of the ACM. 2025.

[3] Karimi H, NutiniJ, Schmidt M. Linear convergence of gradient and proximal-gradient methods under the polyak-tojasiewicz condition. Springer. 2016. 14
[4] Lee JM. Introduction to topological manifolds. New York, NY: Springer New York; 2000 May 25.



Convergence Rates Analysis: Part |l

 Remarks on convergence rates [1]:

»Under mild conditions, Hom-PGD with any homeomorphism can reach the
same order of convergence rates

» The Bi-Lipschitz constants of homeomorphism impact the hidden constants
in the convergence rates

* Bi-Lipschitz constants of Gauge Mapping

Proposition 3.3 (Bi-Lipschitz Constants of the Gauge Mapping). Let K C R" be a compact convex
set and let x° € int(KC) be an interior point. Define the inner and outer radii with respect to xX° as

rii=sup{r > 0:B(x°,r) C K}, r,:=inf{r>0:K CB(x°,7)},

such that B(x°,r;) C K C B(x°,1,). Then the Lipschitz constant (denoted as L(-)) of gauge
mapping v associated with K satisfies the following bounds:

1
Forward Lipschitz: ko := L(v) < 27, +72/ri, Inverse Lipschitz: — = L(xp™") < 2/ri.
K1

Central interior point = Smaller Lipschitz = Faster Convergence

[1] C. Liu, E.Liang*, M. Chen", “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurPS 2025. Spotlight.
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Illustrative Examples: Convex & Star-convex Cases
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optimality gap |fi — F*|/|f"|

1000+ Dim. Convex Programs: SOCP & SDP

SOCP Max-Cut SDP

Lo o ogx, 2 (-2
LIEI}EIélU 2}: Qx+p x ).

s.t. [|Gix +hil|, < ¢/ x+di, i € [nsoc]

Lot 10°
10t 10%] 4w 1071
G “ :
100 [} 2| | (0]
g & 1072, £107
) — -+~
10 w0 : :
= o ®
Hd >
1072 £ 100 T = 107 2
ol a
5 = o 1072
103 107 E— =
o
. 10-*
0 100 200 300 400 500 600 107% 0 200 400 600
running time (s) PGD FW  ALM  RD Hom-PGD running time (s) PGD ALM-logALM-bp RD Hom-PGD

2-4 order reduction on per-iter. cost, faster convergence to optimum,
per-step feasibility guarantees

17




Ablation Study

* Impacts of gauge mapping: ®(z) = x° + s(x°,z) -z

’; I e //: o
e S - Central interior point —
g 10 aof Smaller Lipschitz —
21073
: | Faster Convergence
§' cpentral_ip \

107 10° 10! 102 103 = = £ T

num of iteration 21 z1
(a) Convergence comparison. (b) Near-Boundary IP (c) “Central” IP

* Impacts of gradient methods: GD vs Adam

<o S Adaptive/Accelerated

W e .

g 1o /[ SO methods excel in non-

P % convex landscapes
o nlu?:w of itera%i%zn 1 N - z01 zO; /

18
(a) Convergence comparison. (b) Gradient descent (c) Adam [KB14]



Takeaways: Hom-PGD

* |dea:

» Transform complex constrained problems into simple ones
via homeomorphism.

e Contributions:

» Construct explicit-form homeomorphism for any compact
convex set via gauge mapping

»Hom-PGD as an algorithm that with low per-iter costs,
matching optimal convergence
* Future works:

» Advanced gradient methods (Nesterov, momentum, Adam)
» Extend to more general non-convex constraints [2]

[1] C. Liu, E.Liang", M. Chen", “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurlPS 2025. Spotlight.
[2] C. Liu, E. Liang®, M. Chen®, “Hom-PGD*: Ho meomorphic Reformulation for Efficient Optimization over Non-convex Sets”. Under review

PGD

min f(x) st.xek

e

0
x1

Hom-PGD

min h(z) st.zeB

3
>
/ )
2 /
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Homeomorphism Methods: Part Il

Hom-Proj. to Ensure Neural Network Feasibility

[1] E.Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML, 2023. 20
[2] E_Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”. JMLR 2024.



Input-Solution Mapping for Optimization Problems

Input Solution Optimal power flow problem
0 . Pgl Pg2
L Iterative X1y —m—
92; % Solver 9 x;, EREETRER] 2 Pd | [

Pd: demand; Pg: generation

v

* Learn the mapping between I —

— P9

input a nd Solution 60: Reaching line flow limit

» Continuous (a.e.) mapping for _
optimization with continuous |

|
objective and constraints [1-4] |
0 20 ﬂltlnDUt (Pdf)ﬁO 80 100

wu
o

Solution (Pg)
]

[1] Dontchev, A. L., & Rockafellar, R. T. Implicit functions and solution mappings (Vol. 543). New York: Springer. 2009

[2] P. Tgndel, T. A., Johansen and A. Bemporad. An algorithm for multi-parametric quadratic programming and explicit MPC solutions. Automatica, 2003

[3] X. Pan, T. Zhao, M. Chen, and S. Zhang. DeepOPF: A deep neural network approach for security-constrained dc optimal power flow. IEEE Trans. Pow. Sys. 2019 21
[4] X. Pan, M. Chen, T. Zhao, S. H. Low. DeepOPF: A feasibility-optimized deep neural network approach for AC optimal power flow problems. IEEE Sys. J. 2022



Machine Learning Approach

* Use NN to learn the input-to-solution mapping
»Why: Universal Approximation Theorem [1-5]

NNs (e.g., FCNN, CNN, ResNet, Transformer, ...) can approximate
“any” continuous mapping arbitrarily well with sufficient parameters.

»How: e.g., supervised learning

Problem Dataset Training Applying
. min Y [1Fn(8) i1l } |
min f(z,0) Frn Zi
’ O lterative *1 |
s.t.. h(z,0) =0 0, <olver x5
9(x,0) <04 ¢ 3

* NN can predict near-optimal solutions in real-time

[1] K. Hornik, “Approximation capabilities of multilayer feed forward networks,” Neural networks, vol.4, no.2, pp. 251-257,1991.

[2] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math. Control Signals Systems, 2(4):303—-314, 1989.

[3] Pinkus, Allan. "Approximation theory of the MLP model in neural networks." Acta numerica, 8 :143-195, 1999.

[4] Zhou, D. X. Universality of deep convolutional neural networks. Applied and computational harmonic analysis, 48(2), 787-794. 2020.
[5] Lin, H., & Jegelka, S. Resnet with one-neuron hidden layers is a universal approximator. NeurlPS 2018.




Progress and Significant Results

* Algorithmic design
» Unsupervised, self-supervised, GNN[1-3]

* Theoretical advance

» Approximation capability of deep NN & ResNet [4-6]
» Universal approximation of GNN [7]

* Real-world applications
»Power grid [8-9], wireless network [10], PDE solvers [11],...

[1] Park, S., & Van Hentenryck, P. Self-supervised primal-dual learning for constrained optimization. AAAI. 2023

[2] Huang, W., Chen, M., & Low, S. H. Unsupervised Learning for Solving AC Optimal Power Flows: Design, Analysis, and Experiment. IEEE Trans. Power Syst. 2024
[3] Owerko, D., Gama, F., & Ribeiro, A. Optimal power flow using graph neural networks. IEEE ICASSP. 2020.

[4] Yarotsky, D. Error bounds for approximations with deep ReLU networks. Neural networks, 94, 103-114. 2017

[5] Liang, S., & Srikant, R. Why deep neural networks for function approximation. ICLR. 2017

[6] Liu, C, Liang, E., & Chen, M. Characterizing ResNet’s Universal Approximation Capability. ICML 2024

[7] Chen Z, Liu J, Wang X, Lu J, Yin W. On representing linear programs by graph neural networks. ICLR 2023.

[8] X. Pan, T. Zhao, M. Chen, and S. Zhang. DeepOPF: A deep neural network approach for security-constrained dc optimal power flow. IEEE Trans. Pow. Sys. 2019
[9] Pan, X., Chen, M., Zhao, T., & Low, S. H. DeepOPF: A feasibility-optimized deep neural network approach for AC optimal power flow problems. IEEE Syst. J. 2022
[10] Shen, Y., Zhang, J., Song, S. H., & Letaief, K. B. Graph neural networks for wireless communications: From theory to practice. IEEE Trans. Wireless Commun. 2022
[11] Greenfeld D, Galun M, Basri R, Yavneh |, Kimmel R. Learning to optimize multigrid PDE solvers. ICML 2019.
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Challenge: Ensuring Neural Network Feasibility

* Feasible solution is crucial for safety-critical systems

» E.g., in power grid operation, violating line capacity limits can cause grid
failure

Infeasible region

feasible region

.....

-----

* Hard to guarantee NN feasibility due to prediction errors

24



Existing Works on Neural Network Feasibility

. . Constraint | Feasibility Optimality Low
Existing Work Setting Ensuring Bound Run-time
Activation layer Simplex/Box v v v
Penalty/Lagrangian General X X v
Orthogonal projection General v v X
Sampling approach General v v X
Preventive learning Linear v X v
Gauge/RAYEN Convex v v v

Sigmoid activation [, projection Sampling-based
(. fp
fd
0:5 j{‘

Previous works either lack performance guarantees, or applicable to
limited constraint sets, or slow in run-time 25



Motivation and Ball-Homeomorphism

* NN predicts near-optimal but infeasible solutions

* Solve projection for feasibility
» over a non-convex set: hard Tet1 =" e Ii
» over a ball: easy = argmin 5 || — £y 13

@ Transform the hard projection to easy projection over ball

* Homeomorphism:

» Bijective & Bi-continuous mapping
» Preserve topological structures

* Ball-homeomorphic constraint set ?

26
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Ball-Homeomorphic Constraint Set

» All compact (star-)convex sets [1]

»For compact and contractible manifold [2]

» in 6 (or higher)-dim space and its boundary is simply
connected

» in 5-dim space and its boundary is diffeomorphic to a 4-dim
sphere

» All open simply-connected sets in 2-dimension space [3]

Ball-Homeomorphic set a general class of non-
convex set beyond convex and star-convex set

[1] Geschke, S. (2012). Convex open subsets of Rn are homeomorphic to n-dimensional open balls. Hausdorff Center for Mathematic.
[2] Smale, S. (1962). On the structure of manifolds. American Journal of Mathematics, 84(3), 387-399 (Theorem 5.1) 27
[3] Riemann Mapping Theorem



Homeomorphic Projection

input
Tg = F(6)
NN predictor K93
Ko,
0co V.. A
~~~~~~~ v
Constrained ‘A
optimization 7 = 51(x)
1
. x €K D 7z €B
min f(x,0 6,
min f(z,6) x = P, (2)
s.t. ¢ € Ky
constraint set unit ball

Setting: recover NN solution feasibility over ball-homeomorphic sets

28



Homeomorphic Projection

input output

Tg = F(@)tinfeasible Homeomorphic projection Zg € Ko
NN predictor

0cO
=" 1bg(+) : Minimum-Distortion Homeomorphic mapping
. Zg ~
Constrained 0 Xg % 2o ? Xg
optimization ""'---i,.f,‘fx,b'sectm" P
~7 Xg
" —1
min f(z, 0) Yo (), \ Yo() ;
zeR KH g B ' ’C@
s.t. x € ICy

1. Learn homeomorphism for a class of non-convex set
2. Transform the hard projection problem into ball space

3. Perform bisection over the ball for feasible solution

[1] E.Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML, 2023.
[2] E_Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”. JMLR 2024.
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Distortion and Homeomorphism

Distortion: D(y) = k,/k; = 1

[P (z) -y (22| : 1Y (z) -y (o)
k, = sup{] Ky = inf
P R A A TP
» Ratio of max & min distance variations by Y

» Multiple homeomorphic mappings between two sets

Prop. 1. Let i be a homeomorphic mapping between B
and K, the homeomorphic projection as:

HP; (x) = Y (Ilz (¥~ (x)))

Then the projection distance is bounded as:
[T (x) — x|| < [|HP(x) — x|| < D) - ||z (x) — x|

Orthogonal Homeomorphic Distortion of
projection distance projection distance Homeomorphism

K4

Small distortion

Y2

B <«—T=

Ko

Large distortion

Minimum Distortion
Homeomorphism (MDH)

min log D (1)

30



Invertible NN Can Approximate MDH

* Invertible Neural Network & : u f———>——{ vy |
» NN with invertibility l l
»E.g., coupling layers [1] - i l

* Properties of ®: uy — @ > +_+@

t —> V
» Continuous + Invertible — coupling layer: forward
Homeomorphism

e Universal approximation of INN

. u 1 <
»INN can approximate “any” @ l
homeomorphic mapping arbitrarily
. . . vi—— S
well with sufficient layers [2] . l \
. . ‘ U9 i< =3¢
Challenge: How to design the loss function?
coupling layer: inverse
[1] L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation. ICLR 2015. 31

[2] T. Teshima, I. Ishikawa, K. Tojo, K. Oono, M. Ikeda, and M. Sugiyama. Coupling-based invertible neural networks are universal diffeomorphism approximators. NeurlPS 2020



Training INN to Approximate MDH

* Training INN for homeomorphism between B and K

N F

»Loss design: r(3,) = V (3y(B)) — \ P (Bp(B)) — AoD (Dp)

Volume Penalty for Distortion
maximization (I)G(B) C Ky regularization

Ko

» Training dynamics:
q’g(B) @()(B) q)()(B)

»0-dependent constraint 3 = optimize total loss Eg[L(®g)]

* Training requirement: a valid trained INN, i.e., @y (0) € Ky
» Mapping the center of ball to a feasible point

32



Bisection Algorithm

* Given a valid INN and an infeasible solution
»Step 1: map it to ball space:
Zg = P, (To)
»Step 2: bisection for a
0* = supye o, {®s (@ 5) € Ko}
»Step 3: map it back

ﬁg — (I)Q (Oé* . 59)

33



Feasibility, Optimality, and Run-time

Theorem 1. For a ball-homeomorphic set, given a valid m-
layer INN and an infeasible n-dim solution, the k-step
bisection will return a solution with

* Feasibility guarantee

* Bounded optimality loss: €, + €pis + €nom
» €pre: NN prediction error
> epis = 0(275) : bisection-induced optimal loss
» €hom < D(Pg)(2€inn + €pre): homeomorphism-induced optimality loss

* Run-time complexity: O (kmn?)

Performance guarantees over ball-homeomorphic
constrains beyond convex ones

34



| | | I
o] o = N o N

B A ¥ B A
o U A W N H O -

INN Learns Homeomorphism

* Learning the MDH mapping between a unit ball and a non-convex
quadratic constraint set (with different input 0)

/Cg:{xGR2\:UTQa:—I—qT:E—I—b§O,

Log-volume Constraint violation Log-distortion
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Recovering Feasibility for Constrained Problems

* NN solutions for QCQP, SOCP, and non-convex AC-OPF

* 100% feasibility, 0.2% extra optimality loss, 2-4 order speedup

Method Feasibility Optimality Speedup
. . . solution error  objective error

Préjlgtor Prol;g:;in feas. rate  ineq. vio. €q. v10. ave. . cor.  ave. . cor | ave.  cor

&l %@ lmom() lmorm()) | % () %) %L %d) [ xB x@

Convex QCQP: n = 200, d = 100, neq = 100, Nineq = 100
NN — 93.95 0.047 0 4.16 4.36 1.45 1.42 10° —
NN WS 100 0 0 3.9 0 1.37 0 12.8 0.8
NN Proj 100 0 0 4.16 4.36 1.45 1.43 21.3 1.3
NN D-Proj 94.14 0.015 0 4.16 4.36 1.45 1.42 805 48.8
NN H-Proj 100 0 0 4.17 4.52 1.47 1.69 | 8353 511
SOCP: n = 200, d = 100, neq = 100, nineq = 100
NN — 88.96 0.192 0 4.8 5.27 1.35 0.99 10° —
NN WS 100 0 0 4.22 0 1.24 0 12.9 1.4
NN Proj 100 0 0 4.8 5.26 1.37 1.14 13.6 1.5
NN D-Proj 93.85 0.007 0 4.84 5.56 1.38 1.22 308 34
NN H-Proj 100 0 0 4.83 5.47 1.41 1.56 | 6724 749
118-node AC-OPF: n = 344, d = 236, Neq = 236, Nineq = 452

NN — 94.92 0.002 0 9.05 9.08 0.69 0.59 10* —
NN WS 100 0 0 8.59 0 0.66 0 29 1.5
NN Proj 100 0 0 9.13 1075 0.69 0.59 33.1 1.7
NN D-Proj 95.41 0.002 0 9.05 9.08 0.69 0.59 24.6 1.3
NN H-Proj 100 0 0 9.36 15.3 0.78 2.44 370 22.9
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Takeaways: Hom-Proj.

* Idea:
» Transform complex projection problems into easy ones via
homeomorphism.

e Contributions:

»Learn homeomorphism for non-convex set via invertible
neural network (with universal approximation)

»Hom-Proj to ensure NN output feasibility with bounded
optimality gaps and low complexity

* Future works:
» More general non-convex constraint set [1]
» Extend to stochastic constraints [2-3]

[1] E.Liang, M. Chen, “Efficient Bisection Projection to Ensure NN Solution Feasibility over General Set”, ICML 2025.

[2] M. Zhou, E. Liang", M. Chen®, S. Low. “Partially Permutation-Invariant Neural Network for Solving Two-Stage Stochastic AC-OPF Problem.”, |IEEE Trans. on Power System. 2025.

[3] E_Liang®, M. Zhou, J. Zhao, M. Chen® “Solving Chance-Constrained AC-OPF Problem by Neural Network with Bisection-based Projection”, ACM E-energy. 2025.
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Conclusion

* Homeomorphism methods for decision-making with hard constraints
* Idea: transform complex problem into simple domains
— Hom-PGD to accelerate iterative algorithms [1,2]
— Hom-Proj. to ensure neural network feasibility [3,4]
* Goals: safe, economic, rea-time decisions

e Leverage ML, optimization, and topology for smarter decision making

* Leverage symmetry/low-dim. to further reduce complexity [5-6]
* Generative models with hard constraints [7-8]
 Combinatorial & Discrete Problems

[1] C. Liu, E.Liang", M. Chen", “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurlPS 2025. Spotlight.

[2] C. Liu, E. Liang®, M. Chen*, “Hom-PGD*: Homeomorphic Reformulation for Efficient Optimization over Non-convex Sets”. Under review

[3] E_Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML, 2023.

[4] E.Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”.JMLR 2024.

[5] E.Liang, M. Chen, “Efficient Bisection Projection to Ensure NN Solution Feasibility over General Set”, ICML 2025.

[6] M. Zhou, E. Liang®, M. Chen", S. Low. “Partially Permutation-Invariant NN for Solving Two-Stage Stochastic AC-OPF Problem.”, IEEE Trans. on Power System.

[7]1 X. Li*, E.Liang", M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set.”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award
[8] E.Liang, M. Chen, “Generative Learning for Solving Non-Convex Problem with Multi-Valued Input-Solution Mapping”, ICLR 2024.
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Extension I: Hom-PGD for Non-convex Constraints

Orlglnal Space Invertible Neural Network @, Hom. Space

jective: = onstraint: B — ® 1 . e
min fyp(x) s.t.x € Ky oeciv: Ho(z) = Jo{Bol)) consteaiee: B = 257(K) min Hy(z) s.t.z€B
xX A

< ----------------- X = @e(z) ----------------- N

T T8 Ty,
xl
151,

Zop

XS k € ! ’ “’,/'! f?
T . 054/ °*
7o(") 110 Split (—@ ! I VAV
' -0.5 1

-1.0
-1 -1.5
llllllllllllllllllll z:¢6 (x) llllllllllllllll)
-2.0 . : . . ; . ;
_2I.0 _i_5 _]I_.O _6.5 0:0 0:5 1:0 1:5 2:0 -2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x @ Initial point — Iteration trajectory % Optimal point “
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[1] C. Liu, E. Liang®, M. Chen*, “Hom-PGD*: Homeomorphic Reformulation for Efficient Optimization over Non-convex Sets”. Under review



Extension |l: Extension to Stochastic Problems

* Two-stage Stochastic Programs
* Curse of dimensionality with increasing number of scenarios
 Partially permutation-invariant NN to predicting solutions [1]

Power
Flow |==
. Solver
uncertainty
scenarios

First-stage Second-stage
solution solutions

* Apply Hom-Proj. or Bis-Proj. to ensure solution feasibility [2]
e 2-order speedup, 0.95% optimality gap over 793-bus grid

[1] M. Zhou, E. Liang", M. Chen", S. Low. “Partially Permutation-Invariant Neural Network for Solving Two-Stage Stochastic AC-OPF Problem.”, IEEE Trans. on Power System. 2025. 40
[2] E.Liang, M. Chen, “Efficient Bisection Projection to Ensure NN Solution Feasibility over General Set”, ICML 2025.



Extension Ill: Hard-Constrained Generative Models

Part of PEMS-BAY time series

dx;/dt = v, 2017-01-13 2017-01-16 2017-01-19 2017-01-22
2 xO FM = -—’—V .fﬁ-v- —’\U- “’_V
E
‘ Z"Q E z ; ;i Ei
dZt/dt =7, L c’k'
Zo " Z i B
GFM 75{ , z w i ; & 4 \ /
A S

2017-01-11 2017-01-28 2017-02-27 2017-02-06

(a) FM (b) Projection

[1] X. Li*, E. Liang®*, M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set.”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award
[2] X. Li, E. Liang", M. Chen®, “Gauge Flow Matching: Efficient Constrained Generative Modelling over General Convex Set and Beyond.”, ICLR 2026
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Homeomorphism Methods: Part Il

Gauge Flow Matching for Efficient
Constrained Generative Modelling

[1] E.Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML, 2023.
[2] E_Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”. JMLR 2024.
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Success of DM/FM-based Generative Models

Picture/Video Robotic planning Protein/Material

[1,2]

[1] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv . 2022

[2] Betker, J., Goh, G, Jing, L., Brooks, T., Wang, J., Li, L., ... & Ramesh, A. Improving image generation with better captions. OpenAl. 2023

[3] Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., ... & Song, S. Diffusion policy: Visuomotor policy learning via action diffusion. ICRR 2023.

[4] Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., ... & Jumper, J. M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024 45
[5] Zeni, C., Pinsler, R., Zliigner, D., Fowler, A., Horton, M., Fu, X, ... & Xie, T. A generative model for inorganic materials design. Nature, 2025.



Constraint Matters in Many Applications

Physical Constraints Watermarked Generation

User-defined tokens External users

&#%_* %.‘.

Constrained Manifold
M:={xERd:ciSaiTbe,;,b?}]

e Safety-critical constraints for robotics [1]
* Embed invisible information by constraining

Structure constraints in protein/material [2 _
P / 2] user-defined tokens [3]

[1] Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., ... & Song, S. Diffusion policy: Visuomotor policy learning via action diffusion. ICRR 2023.
[2] Fishman, N., Klarner, L., De Bortoli, V., Mathieu, E., & Hutchinson, M. J. Diffusion Models for Constrained Domains. TMLR 2023. 46
[3] Liu, G. H., Chen, T., Theodorou, E., & Tao, M. Mirror diffusion models for constrained and watermarked generation. NeurlPS. 2023.



DM/FM Suffers from Feasibility Issues

DM/FM Generation Error Propagation [1]

d actual traiector Infeasibility !
= f(x,t) + o(x,t)w; Ry —

dt _—

ideal trajectory

Constraints

Drift Diffusion

.
i“
s
o3
o

Error sources: t=20 Time step =1

* NN approximation error (score . .,
function / vector field) * The error.bound typically” has
exponential dependency on the
Lipschitz constants of the score
functions [2,3] / vector fields [4].

* Discretized SDE/ODE integration
error

[1] Li, Y., & van der Schaar, M. On Error Propagation of Diffusion Models. ICLR. 2024.
[2] Kwon, D., Fan, Y., & Lee, K. Score-based generative modeling secretly minimizes the wasserstein distance. NeurlPS 2022.

[3] Chen, S., Daras, G., & Dimakis, A. Restoration-degradation beyond linear diffusions: A non-asymptotic analysis for ddim-type samplers. ICML 2023 47
[4] Benton, J., Deligiannidis, G., & Doucet, A. Error bounds for flow matching methods. TMLR. 2024.



Existing Studies on Constrained DM/FM

Limited constraint sets / lack guarantees / high complexity

Methods Constraint Feasibility =~ Approximation Training Inference
setting guarantee bound complexity complexity
RDM* [FKDB 23] Convex X + 4+ + + 4+ +
RDM?® [LE23] Cube/Simplex X o+ +
RSB [DCY " 24] Smooth + Bounded ++ + + 4+
RFM [XZY " 24] Convex + + 4+
Metropolis sampling [FKM ™ 24] Manifold X + ++
MDM [LCTT24] Ball/Simplex X + +
NAMM [FBB24] (Non)-Convex X X + + + +
Projection-based [SKZ 23, CBF24] Convex + + 4+ +
Barrier methods [FKDB 23] Convex X + +
Penalty-based [LDDB24, KDR24] General X X + +
Gauge Flow Matching Convex + +

! Training/inference complexity is compared with the unconstrained versions of those generative models.

Reflection

Mirror Map
Guidance
Training

Ours
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Gauge Flow Matching

Dataset: Framework

* X1 ~ Pdata OVEr a compact convex set C

Training: e dx/dt = v,
* Invers mapping: z; = @ 1(x;) S FM
* Regular flow matching over ball [1]
f dz,/dt = v, v &
. Z > Z
Inference: 0 — 1

* Reflected generation over ball [2]

* Forward mapping: x; = ®(z;)

How to find invertible ® for general convex set with low-complexity ?

49

[1] X. Li*, E. Liang®, M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set.”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award
[2] X. Li, E. Liang", M. Chen®, “Gauge Flow Matching: Efficient Constrained Generative Modelling over General Convex Set and Beyond.”, ICLR 2026



Gauge Mapping: Homeomorphism for Convex Set

n
»

d(z) = x° + s(x°,z) -z

S(xol Z) = dZ/dl

» Translating by x° € int(C)
» Scaling by s(x°,z) € Ry
* Properties of ®:

» Continuous + Invertible = Homeomorphism
» Bi-Lipschitz — Beneficial for algorithm [4]

 Computation of &:

» Closed-form for common convex sets [1-2]
v’ Linear, quadratic, SOC, LMI.

» Bisection for general compact convex set [3]

[1] Tabas, D., & Zhang, B. Computationally efficient safe reinforcement learning for power systems. IEEE ACC 2022.

[2] Tordesillas, J., How, J. P., & Hutter, M. Rayen: Imposition of hard convex constraints on neural networks. arXiv 2023.

[3] Mhammedi, Z. Efficient projection-free online convex optimization with membership oracle. COLT 2022.

[4] X. Li*, E. Liang", M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set.”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award
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Theorical Analysis of GFM

Approximation Error Inference Complexity
S5+L
WZ(pdata:pé?) SL¢°805+ 9-€g O(NFETLZ +mC)
RFM error [1] Regular FM' complexity
* Lg: Lipschitz of NN-based vector field * NFE: num of function evaluation
* €g: l, flow matching loss over ball * n: dimension of data
* Lg: Lipschitz of gauge mapping * m- C :gauge mapping calculation
« Reduced by selecting a “central” interior « m: num of constraints {g;(x) < 0},
point x° € int(C) e (:same order of complexity to calculate g;(x)

Bounded approximation error + minor additional complexity

51

[1] Xie, T., Zhu, Y., Yy, L., Yang, T., Cheng, Z., Zhang, S., ... & Zhang, C. Reflected Flow Matching. ICML. 2024.



Empirical Study

Low-dim Toy Example Scalability of Gauge Mapping

Constraints dimension  ------
. . 0 T T T T T T T T :
Simple constraints 10717 | | | | | | —

= = -05 |l 1
Constraint Metrics | VanillaFM  Reflected FM  Projected FM  GFM 10 | l(‘)Ml drati -: -;;1?"'/5
—W . N | - A- uaaratic ) (,;'/“" 1
Polytope MMD () 006200 006155 0.06165 _____ 0.04154 1 @ 19| = soc ) :
Feasibility Rate (%) [ 95.69 100 100 100 S Li L 1
(n=2) L N T e e e =i 1015 4 Inear e 1
Inference Time (s) 3.412 5.616 4,776 3.746 i £ P i
e ~ [ -=~ H
. MMD ({) 0.06311 0.06313 - 0.05866 H 102 X~ i
Quidraic Se! Feasibilty Rate (%) [BOIR 72T~ ~Z7717T-=TTTTIIIIO0 !
N Inference Time (s) | 3.679 10.22 >3600 3.675 ! 1020 == i
A :
2'2 24 28 28 : 210
Dimension b
Joint linear + quadratic constraints _

Input sample size J—
Vanilla Reflected Projected GFM 1 H
10 H
| L™ :

ol Quadratic /i,/"
@ 10°7| -= soc ’/,/' :
o Linear R i
= Lot i
- 10-1 i ‘;‘:;/“/ i
i o !
‘ L-" - /4:’ ‘ i
10-2 ::,—/____./——" = i
T
10’ 102 10° 10* 1 10°

Sample Size



Summary

Takeaway messages

i

dx,/dt = v, kN
Xo = " X1 s

A oy
oY |

dz./dt = v,

A Zq
GFM

* Bijective gauge mapping for
general compact convex set

* Enable low-complexity
constrained generation

[1] X. Li*, E. Liang®, M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set.”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award

Future works

* Extend to non-convex set

 Star/geodesic-convex set [1]
e Ball-homeomorphic set [2]

* One-step generation
» Constrained distillation/consistency

* More real-world applications

53

[2] X. Li, E. Liang", M. Chen®, “Gauge Flow Matching: Efficient Constrained Generative Modelling over General Convex Set and Beyond.”, ICLR 2026
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Property of Input-Solution Mapping

o o o Theorem 3B.5 (basic continuity properties of solution mappings in optimiza-
] Co nvex Optl mi zatl on tion). In the preceding notation, let p € P be fixed with the feasible set Steas(P)
nonempty and bounded, and suppose that:
— Stron gly convex (e_ g., QP) (g) the mapping Steas Is Pompeuf—HauL?dorﬁc continuous at p relative to P, or
equivalently, Sg.,s is continuous at p relative to P with Sge,s(Q N P) bounded for
e Continuous solution mapping some neighborhood Q of p,
(b) the function fy is continuous relative to P x R" at (p,X) for every X € Steas(P)-
— Gene ral convex (e. g., LP) Then the optimal value mapping Sya is continuous at p relative to P, whereas the

optimal set mapping Sop: 1 0sc at p relative to P.

e Continuous (a.e.) solution mapping

0 Continuous optimization

— Unique solution

e Continuous solution mapping

— General continuous

* “Continuous” solution mapping

\J

— Set-valued mapping v

55
[1] Dontchev, A. L., & Rockafellar, R. T. (2009). Implicit functions and solution mappings (Vol. 543). New York: Springer.



Feasibility of Sequential Problems

0O Explicit-form constraints

— Deterministic sequential problems (e.g., MPC)
e Unrollitasalarge CO / utilize problem structure

— Stochastic sequential problems (e.g., MSP)
e Sampling = det. problem = feasibility with prob.

— Infinite horizon problem (e.g., Stability)
» Construct explicit safe state/policy set

high 1
probabilistic instantaneous

Py [c(ss,a:) &) >1-0

0 Unknown, but can sampling ., |  peebisticcmiste

H
: guarantes | p, [vac(st,at) s&] >1-6
— Constrained MDP g enEth

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

assurance = E‘ﬂ' [C(St1 a‘t)] < £t1
e Zero-dua |Ity gap expected cumulative Vt € [H]
. . . < expected instantaneous
* Primal-dual algorithm o VZ(p) = Ex ;wc(sf,at)] <€
* Feasibility with prob. cumulative temporal scope instantaneous

time horizon of safety consideration
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Discrete & Combinatorial Problems

0 Solving continuous sub-problems

— Continuous relaxation + B&B/cutting-plane
* ML to predict continuous problems [3]
* ML to accelerate B&B/cutting-plane [4-5]

0 Equivalent continuous formulation

— Motzkin-Straus formulation of Max-Clique problem
* Constrained indefinite quadratic program [1]

0O Relaxation + Recovering

— SDP relaxation + randomized rounding for Max-Cut problem
* 0.879 approximation ratio [2]

[1] Gibbons, L. E., Hearn, D. W., Pardalos, P. M., & Ramana, M. V. Continuous characterizations of the maximum clique problem. MATH OPER 1997.
[2] M. X. Goemans and D. P. Williamson. .879-approximation algorithms for max cut and max 2sat. STOC 1994.

[3] Kool, W., van Hoof, H., & Welling, M. Attention, Learn to Solve Routing Problems!. ICLR 2019

[4] Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. Learning to branch in mixed integer programming. AAAI 2016

[5] Balcan, M. F., Dick, T., Sandholm, T., & Vitercik, E. Learning to branch. ICML 2018.
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Equality and Inequality Constraint

0 Constraint set: Ky = {x|g(x,0) < 0,h(x,0) = 0}

— Algorithmic view: |
constraint set

e predict-then-reconstruct [1-2]
* X = [xl,XZ] (x1,x3) € Kg

* h(x, p(x)) =0

60
. . . . E ., Dy
— Linear = linear mapping ¢ =>4 = .
— Non-linear = implicit mapping ¢ \g ' g Ry "‘n.f)%f);
s $i g ’
* Ky = {x|g(x1,qb(x1)) < 0} =is v ”
z =Yg (%)
_ ° e e D A TP PP .>
Topological view: Y . comorphism
* Constant-Level-Set Theorem [3] = ()
S embedding !
c Kg =Ky =B

[1] Pan, X., Chen, M., Zhao, T., & Low, S. H. DeepOPF: A feasibility-optimized deep neural network approach for AC optimal power flow problems. IEEE SJ
[2] Donti, P. L., Rolnick, D., & Kolter, J. Z. DC3: A learning method for optimization with hard constraints. ICLR 2021
[3] Lee, ). M., & Lee, J. M. (2012). Smooth manifolds (pp. 1-31). Springer New York.

z € B™T

unit ball
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Distortion and Homeomorphic Mapping

O Distortion: DY) =k, /ky = 1

k, = Sup{||1/J(Z1)—1/J(Zz)||} k, = inf {||¢(Z1)—1P(Zz)||}

21,2 [|z1—22]] Z1,Z7 ||z1—22]]

— Ratio of max & min distance variations by i
— Exist multiple homeomorphic mappings between two sets
— Bi-Lipschitz Constants: D(y) = Lip(y) - Lip(yp~1)

0 Minimum Distortion Homeomorphism (MDH)
— In Hom-PGD:
* Small distortion = faster convergence speed
— In Hom-Proj:
e Small distortion = small opt. loss by HP

B A K,
Small distortion

B#» Ko

Large distortion

Yo

2l <1 < > |l <6

Small distortion y;: x = 6z
- D(ws) =1

Large distortion y3: x = 6R(]|z|])z
- D(y§) ~ 25
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Calculation of Gauge Mapping Il

Algorithm 1 Bisection Algorithm for Point-to-Boundary Distance

Input: A compact convex set C, an interior point 2° € int(C), and a unit vector v.
1: Initialize: oy = 0and o, = 1
2: while |o; — ay| > edo
3: ifz°+ o, v eC then

4: increase lower bound: o; < oy,

5: double upper bound: «,, + 2 - o,y
6: else

7: bisection: a;,,, = (a + @) /2

8: if 2° 4+ a,,, - v € C then

0: increase lower bound: o + o,
10: else
11: decrease upper bound: «,, < a,,
12: end if
13:  endif

14: end while
Output: de(z°,v) = a,,
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Research Landscape
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E2E feasibility
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