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Autonomous driving with 
mixed traffic flow constraints 

Power grid with physical 
and operational constraints 

4G/5G parameter optimization 
with load balance constraints

Parameter | 𝜃
Decision  |  𝑥
Objective |  𝑓
Constraints    |    ℎ, 𝑔

Constrained Optimization

Goals: safe, economic, rea-time decisions

Decision-Making with Hard Constraints
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A Concrete Example in Power Grid Operation

generation cost

AC power flow 
equations

Generation and 
voltage limit 
constraints

Branch flow 
limit constraints

• Minimizing generation cost to serve the load, with an accurate AC model



Iterative Algorithm vs Machine Learning
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Feasible, optimal, but slow

𝜃: parameter｜ 𝑥: decisions

Fast, near-optimal, but non-feasible

Given 𝜃, update iteratively to pursue 
optimal solution 𝑥𝜃

∗

• 𝑥𝜃
𝑛+1 = 𝑥𝜃

𝑛 − 𝑔(𝑥𝜃
𝑛)

• E.g., interior point methods, Gurobi, …

Training neural network to predict 
solutions end-to-end  
• ො𝑥𝜃 = 𝐹𝑛𝑛 𝜃
• E.g., supervised training min

𝐹𝑛𝑛

σ𝑖 ||𝐹𝑛𝑛 𝜃𝑖 − 𝑥𝑖
∗||



Homeomorphism Methods
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Our contributions

Homeomorphism
• Bijective & Bi-continuous mapping
• Preserve topological structures Goals: safe, economic, rea-time decisions

[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.
[2] E. Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML. 2023. 
[3] E. Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”. JMLR. 2024.

Ensure neural network feasibility [2,3]
➢ The first work ensuring NN solution 

feasibility with bounded opt. gap and low-
complexity over a class of non-convex sets

Accelerate iterative algorithms [1]
➢ The first work achieving optimal 

convergence rates without expensive 
oracles over general convex sets

Motivation: transform complex
constrained problem into simple

constraint domain (e.g., ball)



Hom-PGD to Accelerate Iterative Algorithms

6
[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.

Homeomorphism Methods: Part I
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Applicable Scenarios: 
• Objective: linear, quadratic, convex,…

• Constraints: polytope, convex cones,…

 

Convergence rate: num. of steps to optimum
• Sublinear: 𝑁 = 𝑂(1/𝜀)

• Linear: 𝑁 = 𝑂(log 1/𝜀)

 

Per-step cost: 𝑥𝜃
𝑛+1 = 𝑥𝜃

𝑛 − 𝑔(𝑥𝜃
𝑛)

• Memory cost: store medium variables.

• Computational cost: 𝑂 𝑛2 , 𝑂(𝑛3)

Key Metrics for Iterative Algorithms

[1] Boyd S., Vandenberghe L. Convex optimization. Cambridge university press; 2004.
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Second-order methods (Hessian)
• Primal-Dual Interior Points (in MOSEK)

First-order methods (Gradient)
• Projection Gradient Descent (PGD)

• Projection-free Frank-Wolfe (FW)

• Augmented Lagrangian (e.g., ADMM)

Existing Iterative Algorithms

High memory & per-step cost

Non-trivial sub-problems

Research Gap: design an algorithm that with low per-iter costs, 
matching optimal convergence, working for general convex set 



Hom-PGD to Accelerate Iterative Algorithms
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1. Construct homeomorphism for general convex set

2. Transform the problem into ball-constrained space

3. Projection gradient descent over ball is easy

[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.



Gauge Mapping: Homeomorphism for Convex Set

➢ Translating by 𝑥∘ ∈ int(𝒞)

➢ Scaling by 𝑠 𝑥∘, 𝑧 ∈ ℝ+

• Properties of Φ:
➢Continuous + Invertible → Homeomorphism

➢Bi-Lipschitz → Beneficial for algorithm [4]

• Computation of Φ:
➢Closed-form for common convex sets [1-2]

✓ Linear, quadratic, SOC, LMI.

➢Bisection for general compact convex set [3]

10

𝑑1

𝑑2

𝑥∘

𝛷 𝑧 = 𝑥∘  +  𝑠 𝑥∘, 𝑧 ∙ 𝑧 𝑠 𝑥∘, 𝑧 = 𝑑2/𝑑1

𝑧

[1] Tabas, D., & Zhang, B. Computationally efficient safe reinforcement learning for power systems. IEEE ACC 2022.
[2] Tordesillas, J., How, J. P., & Hutter, M. Rayen: Imposition of hard convex constraints on neural networks. arXiv 2023.
[3] Mhammedi, Z. Efficient projection-free online convex optimization with membership oracle. COLT 2022.
[4] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.



Computation of Gauge Mapping
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[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.



Computation of Gauge Mapping
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[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.



• Original Problem: (P)

• Transformed Problem: (H)

Landscape Analysis and Algorithm Design

13
[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.

(H)(P)

Theorem 1: For convex (𝐏) with global 
optimum 𝑥∗, under mild constraint 
qualification conditions, any stationary 
point 𝒛∗ for (𝐇) is 
• a global optimum of (𝐇): ℎ(𝑧∗) ≤ ℎ(𝑧)
• a global optimum of (𝐏): 𝑥∗ = 𝜓(𝑧∗)

Equivalence between (P) and (H)



• Convergence rates [1]:

➢Reach the optimal convergence rates under unaccelerated settings [2] 
➢Per-iteration cost of 𝒪(𝑛2), without expensive inner optimization

• Extension to structured non-convex settings
➢Proximal-PL objective [3]:   𝒪(log 𝜖−1) rate (match PGD)
➢Star-convex constraints [4]: 𝒪(𝜖−2) rate (beyond PGD)

Convergence Rates Analysis : Part I
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[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.
[2] Altschuler JM, Parrilo PA. Acceleration by stepsize hedging: Multi-step descent and the silver stepsize schedule. Journal of the ACM. 2025. 
[3] Karimi H, Nutini J, Schmidt M. Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition. Springer. 2016.
[4] Lee JM. Introduction to topological manifolds. New York, NY: Springer New York; 2000 May 25.

Theorem 2: Under mild regularity conditions, for compact convex constraint, 
Hom-PGD over (𝐇) match the same convergence rates of PGD over (P):



Convergence Rates Analysis: Part II
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[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.

• Remarks on convergence rates [1]:
➢Under mild conditions, Hom-PGD with any homeomorphism can reach the 

same order of convergence rates

➢The Bi-Lipschitz constants of homeomorphism impact the hidden constants 
in the convergence rates

• Bi-Lipschitz constants of Gauge Mapping

Central interior point → Smaller Lipschitz → Faster Convergence



Illustrative Examples: Convex & Star-convex Cases
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1000+ Dim. Convex Programs: SOCP & SDP
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SOCP Max-Cut SDP

2-4 order reduction on per-iter. cost, faster convergence to optimum, 
per-step feasibility guarantees



Ablation Study
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• Impacts of gauge mapping: 𝛷 𝑧 = 𝑥∘  +  𝑠 𝑥∘, 𝑧 ∙ 𝑧 

 

• Impacts of gradient methods: GD vs Adam

Central interior point → 
Smaller Lipschitz → 
Faster Convergence

Adaptive/Accelerated 
methods excel in non-

convex landscapes



Takeaways: Hom-PGD

19[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.
[2] C. Liu, E. Liang*, M. Chen*, “Hom-PGD+: Homeomorphic Reformulation for Efficient  Optimization over Non-convex Sets”. Under review

• Idea: 
➢Transform complex constrained problems into simple ones 

via homeomorphism.

• Contributions: 
➢Construct explicit-form homeomorphism for any compact 

convex set via gauge mapping

➢Hom-PGD as an algorithm that with low per-iter costs, 
matching optimal convergence

• Future works:
➢Advanced gradient methods (Nesterov, momentum, Adam)

➢Extend to more general non-convex constraints [2]



20[1] E. Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML, 2023. 
[2] E. Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”. JMLR 2024.

Homeomorphism Methods: Part II

Hom-Proj. to Ensure Neural Network Feasibility
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Optimal power flow problem

Pg2Pg1

Pd
Pd: demand;  Pg: generation

Iterative 
Solver

𝜃1,
𝜃2,
…

𝑥1
∗,

𝑥2
∗,

…

Input Solution

Reaching line flow limit

• Learn the mapping between 
input and solution   
➢Continuous (a.e.) mapping for 

optimization with continuous  
objective and constraints [1-4]

Input-Solution Mapping for Optimization Problems

[1] Dontchev, A. L., & Rockafellar, R. T. Implicit functions and solution mappings (Vol. 543). New York: Springer. 2009
[2] P. Tøndel, T. A., Johansen and A.  Bemporad. An algorithm for multi-parametric quadratic programming and explicit MPC solutions. Automatica, 2003
[3] X. Pan, T. Zhao, M. Chen, and S. Zhang. DeepOPF: A deep neural network approach for security-constrained dc optimal power flow. IEEE Trans. Pow. Sys. 2019
[4] X. Pan, M. Chen, T. Zhao, S. H. Low. DeepOPF: A feasibility-optimized deep neural network approach for AC optimal power flow problems. IEEE Sys. J. 2022



Machine Learning Approach
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• Use NN to learn the input-to-solution mapping
➢Why: Universal Approximation Theorem [1-5]

➢How: e.g., supervised learning 

• NN can predict near-optimal solutions in real-time

TrainingDataset

Iterative 
solver

𝜃1

𝜃2

…

𝑥1
∗

𝑥2
∗

…

Applying

min
𝐹𝑛𝑛

෍
𝑖
||𝐹𝑛𝑛 𝜃𝑖 − 𝑥𝑖

∗|| ො𝑥𝜃 = 𝐹𝑛𝑛(𝜃)

Problem

NNs (e.g., FCNN, CNN, ResNet, Transformer, …) can approximate 
“any” continuous mapping arbitrarily well with sufficient parameters.

[1] K. Hornik, “Approximation capabilities of multilayer feed forward networks,” Neural networks, vol.4, no.2, pp. 251–257,1991.
[2] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math. Control Signals Systems, 2(4):303–314, 1989. 
[3] Pinkus, Allan. "Approximation theory of the MLP model in neural networks." Acta numerica, 8 :143-195, 1999.
[4] Zhou, D. X. Universality of deep convolutional neural networks. Applied and computational harmonic analysis, 48(2), 787-794. 2020.
[5] Lin, H., & Jegelka, S. Resnet with one-neuron hidden layers is a universal approximator. NeurIPS 2018.



Progress and Significant Results
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[1] Park, S., & Van Hentenryck, P. Self-supervised primal-dual learning for constrained optimization. AAAI. 2023
[2] Huang, W., Chen, M., & Low, S. H. Unsupervised Learning for Solving AC Optimal Power Flows: Design, Analysis, and Experiment. IEEE Trans. Power Syst. 2024
[3] Owerko, D., Gama, F., & Ribeiro, A. Optimal power flow using graph neural networks. IEEE ICASSP. 2020.
[4] Yarotsky, D. Error bounds for approximations with deep ReLU networks. Neural networks, 94, 103-114. 2017
[5] Liang, S., & Srikant, R. Why deep neural networks for function approximation. ICLR. 2017
[6] Liu, C, Liang, E., & Chen, M. Characterizing ResNet‘s Universal Approximation Capability. ICML. 2024
[7] Chen Z, Liu J, Wang X, Lu J, Yin W. On representing linear programs by graph neural networks. ICLR 2023.
[8] X. Pan, T. Zhao, M. Chen, and S. Zhang. DeepOPF: A deep neural network approach for security-constrained dc optimal power flow. IEEE Trans. Pow. Sys. 2019
[9] Pan, X., Chen, M., Zhao, T., & Low, S. H. DeepOPF: A feasibility-optimized deep neural network approach for AC optimal power flow problems. IEEE Syst. J. 2022
[10] Shen, Y., Zhang, J., Song, S. H., & Letaief, K. B. Graph neural networks for wireless communications: From theory to practice. IEEE Trans. Wireless Commun. 2022
[11] Greenfeld D, Galun M, Basri R, Yavneh I, Kimmel R. Learning to optimize multigrid PDE solvers. ICML 2019.

• Algorithmic design
➢Unsupervised, self-supervised, GNN[1-3]

• Theoretical advance
➢Approximation capability of deep NN & ResNet [4-6]

➢Universal approximation of GNN [7]

• Real-world applications
➢Power grid [8-9], wireless network [10], PDE solvers [11],…



• Feasible solution is crucial for safety-critical systems
➢ E.g., in power grid operation, violating line capacity limits can cause grid 

failure

• Hard to guarantee NN feasibility due to prediction errors

Challenge: Ensuring Neural Network Feasibility

24

: optimal solution

: Prediction error

Danger!



Existing Works on Neural Network Feasibility

25

Sigmoid activation 𝒍𝟐 projection Sampling-based RAYEN

Previous works either lack performance guarantees, or applicable to 
limited constraint sets, or slow in run-time



• NN predicts near-optimal but infeasible solutions

• Solve projection for feasibility
➢ over a non-convex set: hard

➢ over a ball: easy

• Homeomorphism: 
➢Bijective & Bi-continuous mapping

➢Preserve topological structures

• Ball-homeomorphic constraint set ?         

Motivation and Ball-Homeomorphism

26

Transform the hard projection to easy projection over ball  



➢All compact (star-)convex sets [1] 

➢For compact and contractible manifold [2]
➢ in 6 (or higher)-dim space and its boundary is simply 

connected

➢ in 5-dim space and its boundary is diffeomorphic to a 4-dim 
sphere 

➢All open simply-connected sets in 2-dimension space [3]

Ball-Homeomorphic Constraint Set

27
[1] Geschke, S. (2012). Convex open subsets of Rn are homeomorphic to n-dimensional open balls. Hausdorff Center for Mathematic.
[2] Smale, S. (1962). On the structure of manifolds. American Journal of Mathematics, 84(3), 387-399 (Theorem 5.1)
[3] Riemann Mapping Theorem

Ball-Homeomorphic set a general class of non-
convex set beyond convex and star-convex set



Homeomorphic Projection 

28

Setting: recover NN solution feasibility over ball-homeomorphic sets



Homeomorphic Projection 

29

1. Learn homeomorphism for a class of non-convex set

2. Transform the hard projection problem into ball space

3. Perform bisection over the ball for feasible solution

[1] E. Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML, 2023. 
[2] E. Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”. JMLR 2024.



Distortion and Homeomorphism

30

Distortion: D 𝜓 = 𝑘2/𝑘1 ≥ 1

➢ Ratio of max & min distance variations by 𝜓

➢ Multiple homeomorphic mappings between two sets 

𝑘2 = sup
𝑧1,𝑧2

{
𝜓 𝑧1 −𝜓 𝑧2

||𝑧1−𝑧2||
} , 𝑘1 = inf

𝑧1,𝑧2
{

𝜓 𝑧1 −𝜓 𝑧2

||𝑧1−𝑧2||
}

𝜓1

𝜓2

Small distortion

Large distortion

Minimum Distortion 
Homeomorphism (MDH)

Prop. 1. Let 𝜓 be a homeomorphic mapping between ℬ
and 𝒦, the homeomorphic projection as: 

HP𝒦 𝑥 = 𝜓(Πℬ(𝜓−1(𝑥)))

Then the projection distance is bounded as:

||Π𝒦 𝑥 − 𝑥|| ≤ |HP𝒦 𝑥 − 𝑥| ≤ D 𝜓 ∙ ||Π𝒦 𝑥 − 𝑥||

Orthogonal 

projection distance 
Homeomorphic 

projection distance 

Distortion of 

Homeomorphism



Invertible NN Can Approximate MDH

• Invertible Neural Network Φ :
➢NN with invertibility

➢E.g., coupling layers [1]

• Properties of Φ:
➢Continuous + Invertible →

Homeomorphism

• Universal approximation of INN
➢INN can approximate “any” 

homeomorphic mapping arbitrarily 
well with sufficient layers [2]

31[1] L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation. ICLR 2015.
[2] T. Teshima, I. Ishikawa, K. Tojo, K. Oono, M. Ikeda, and M. Sugiyama. Coupling-based invertible neural networks are universal diffeomorphism approximators. NeurIPS 2020

Challenge: How to design the loss function?



Training INN to Approximate MDH

• Training INN for homeomorphism between ℬ and 𝒦
➢Loss design: 

➢Training dynamics:

➢𝜃-dependent constraint 𝒦𝜃 ⟹ optimize total loss 𝔼𝜃 𝐿 Φ𝜃

• Training requirement: a valid trained INN, i.e., Φ𝜃  (0) ∈ 𝒦𝜃
➢Mapping the center of ball to a feasible point

32

Volume 
maximization

Distortion
regularization

Penalty for



Bisection Algorithm

33

• Given a valid INN and an infeasible solution
➢Step 1: map it to ball space: 

➢Step 2:  bisection for 𝛼

➢Step 3:  map it back

ǁ𝑧𝜃

Ƹ𝑧1

෤𝑥𝜃

ො𝑥𝜃

෤𝑥𝜃ǁ𝑧𝜃

Ƹ𝑧𝜃 ො𝑥𝜃

Ƹ𝑧𝜃

0

ො𝑥1



Feasibility, Optimality, and Run-time

34

Theorem 1. For a ball-homeomorphic set, given a valid 𝑚-
layer INN and an infeasible 𝑛-dim solution, the 𝑘-step 
bisection will return a solution with

• Feasibility guarantee

• Bounded optimality loss: 𝜖pre + 𝜖bis + 𝜖hom 

➢𝜖pre: NN prediction error

➢𝜖bis = 𝑂(2−𝑘) : bisection-induced optimal loss

➢𝜖hom ≤ D(Φθ)(2𝜖inn + 𝜖pre): homeomorphism-induced optimality loss

• Run-time complexity: 𝑂(𝑘𝑚𝑛2)

Performance guarantees over ball-homeomorphic 
constrains beyond convex ones



INN Learns Homeomorphism

35

• Learning the MDH mapping between a unit ball and a non-convex 
quadratic constraint set (with different input 𝜃)



Recovering Feasibility for Constrained Problems

36

• NN solutions for QCQP, SOCP, and non-convex AC-OPF
• 100% feasibility, 0.2% extra optimality loss, 2-4 order speedup 



Takeaways: Hom-Proj.

37
[1] E. Liang, M. Chen, “Efficient Bisection Projection to Ensure NN Solution Feasibility over General Set”, ICML 2025.
[2] M. Zhou, E. Liang*, M. Chen*, S. Low. “Partially Permutation-Invariant Neural Network for Solving Two-Stage Stochastic AC-OPF Problem.”, IEEE Trans. on Power System. 2025.
[3] E. Liang*, M. Zhou, J. Zhao, M. Chen* “Solving Chance-Constrained AC-OPF Problem by Neural Network with Bisection-based Projection”, ACM E-energy. 2025.

• Idea: 
➢Transform complex projection problems into easy ones via 

homeomorphism.

• Contributions: 
➢Learn homeomorphism for non-convex set via invertible 

neural network (with universal approximation)

➢Hom-Proj to ensure NN output feasibility with bounded 
optimality gaps and low complexity

• Future works:
➢More general non-convex constraint set [1]

➢Extend to stochastic constraints [2-3]



Conclusion

38

• Homeomorphism methods for decision-making with hard constraints
• Idea: transform complex problem into simple domains

— Hom-PGD to accelerate iterative algorithms [1,2]

— Hom-Proj. to ensure neural network feasibility [3,4]

• Goals: safe, economic, rea-time decisions

• Leverage ML, optimization, and topology for smarter decision making 
• Leverage symmetry/low-dim. to further reduce complexity [5-6]

• Generative models with hard constraints [7-8]

• Combinatorial & Discrete Problems 

[1] C. Liu, E. Liang* , M. Chen*, “Fast Projection-Free Algorithm (without Optimization Oracles) for Optimization over General Convex Set”. NeurIPS 2025. Spotlight.
[2] C. Liu, E. Liang*, M. Chen*, “Hom-PGD+: Homeomorphic Reformulation for Efficient Optimization over Non-convex Sets”. Under review
[3] E. Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML, 2023. 
[4] E. Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”. JMLR 2024.
[5] E. Liang, M. Chen, “Efficient Bisection Projection to Ensure NN Solution Feasibility over General Set”, ICML 2025.
[6] M. Zhou, E. Liang*, M. Chen*, S. Low. “Partially Permutation-Invariant NN for Solving Two-Stage Stochastic AC-OPF Problem.”, IEEE Trans. on Power System.
[7] X. Li*, E. Liang*, M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set .”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award
[8] E. Liang, M. Chen, “Generative Learning for Solving Non-Convex Problem with Multi-Valued Input-Solution Mapping”, ICLR 2024.



Extension I: Hom-PGD for Non-convex Constraints

39
[1] C. Liu, E. Liang*, M. Chen*, “Hom-PGD+: Homeomorphic Reformulation for Efficient Optimization over Non-convex Sets”. Under review



Extension II: Extension to Stochastic Problems

40

• Two-stage Stochastic Programs
• Curse of dimensionality with increasing number of scenarios

• Partially permutation-invariant NN to predicting solutions [1]

• Apply Hom-Proj. or Bis-Proj. to ensure solution feasibility [2]

• 2-order speedup, 0.95% optimality gap over 793-bus grid

[1] M. Zhou, E. Liang*, M. Chen*, S. Low. “Partially Permutation-Invariant Neural Network for Solving Two-Stage Stochastic AC-OPF Problem.”, IEEE Trans. on Power System. 2025.
[2] E. Liang, M. Chen, “Efficient Bisection Projection to Ensure NN Solution Feasibility over General Set”, ICML 2025.

uncertainty 
scenarios First-stage

solution
Second-stage

solutions



Extension III: Hard-Constrained Generative Models

41[1] X. Li*, E. Liang*, M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set.”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award
[2] X. Li, E. Liang*, M. Chen*, “Gauge Flow Matching: Efficient Constrained Generative Modelling over General Convex Set and Beyond.”, ICLR 2026 
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44[1] E. Liang, M. Chen, S. Low, “Low Complexity Homeomorphic Projection to Ensure NN Solution Feasibility for Optimization over (Non-)Convex Set”, ICML, 2023. 
[2] E. Liang, M. Chen, S. Low, “Homeomorphic Projection to Ensure NN Solution Feasibility for Constrained Optimization”. JMLR 2024.

Homeomorphism Methods: Part III

Gauge Flow Matching for Efficient 
Constrained Generative Modelling



Success of DM/FM-based Generative Models

45

[1] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv . 2022
[2] Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L., ... & Ramesh, A. Improving image generation with better captions. OpenAI. 2023
[3] Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., ... & Song, S. Diffusion policy: Visuomotor policy learning via action diffusion. ICRR 2023.
[4] Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., ... & Jumper, J. M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024 
[5] Zeni, C., Pinsler, R., Zügner, D., Fowler, A., Horton, M., Fu, X., ... & Xie, T. A generative model for inorganic materials design. Nature, 2025.

Picture/Video Protein/MaterialRobotic planning

[1,2] [3] [4,5]
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[1] Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., ... & Song, S. Diffusion policy: Visuomotor policy learning via action diffusion. ICRR 2023.
[2] Fishman, N., Klarner, L., De Bortoli, V., Mathieu, E., & Hutchinson, M. J. Diffusion Models for Constrained Domains. TMLR 2023.
[3] Liu, G. H., Chen, T., Theodorou, E., & Tao, M. Mirror diffusion models for constrained and watermarked generation. NeurIPS. 2023.

Watermarked Generation

• Embed invisible information by constraining
user-defined tokens [3]

Physical Constraints

• Safety-critical constraints for robotics [1]

• Structure constraints in protein/material [2] 
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[1] Li, Y., & van der Schaar, M. On Error Propagation of Diffusion Models. ICLR. 2024.
[2] Kwon, D., Fan, Y., & Lee, K. Score-based generative modeling secretly minimizes the wasserstein distance. NeurIPS 2022.
[3] Chen, S., Daras, G., & Dimakis, A. Restoration-degradation beyond linear diffusions: A non-asymptotic analysis for ddim-type samplers. ICML 2023
[4] Benton, J., Deligiannidis, G., & Doucet, A. Error bounds for flow matching methods. TMLR. 2024.

Error Propagation [1]

• The error bound “typically” has 
exponential dependency on the 
Lipschitz constants of the score 
functions [2,3] / vector fields [4].

DM/FM Generation

Error sources:

• NN approximation error (score 
function / vector field)

• Discretized SDE/ODE integration 
error 

Time step

Infeasibility !

Constraints

𝑡 = 0 𝑡 = 1

ideal trajectory

actual trajectory

Drift Diffusion
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Reflection

Guidance

Mirror Map

Limited constraint sets / lack guarantees / high complexity 

Ours

Training



Gauge Flow Matching
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How to find invertible Φ for general convex set with low-complexity ?

Training:
• Invers mapping: 𝑧1 = Φ−1(𝑥1)

• Regular flow matching over ball [1]

Inference:
• Reflected generation over ball [2]

• Forward mapping: 𝑥1 = Φ(𝑧1)

Dataset:

• 𝑥1 ∼ 𝑝data over a compact convex set 𝒞

Framework

𝑥1

𝑧0 𝑧1

𝑑𝑥𝑡/𝑑𝑡 = 𝑣𝑥

𝑑𝑧𝑡/𝑑𝑡 = 𝑣𝑧

𝑥0

GFM

FM

ΦΦ−1

𝒞

ℬ

[1] X. Li*, E. Liang*, M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set.”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award
[2] X. Li, E. Liang*, M. Chen*, “Gauge Flow Matching: Efficient Constrained Generative Modelling over General Convex Set and Beyond.”, ICLR 2026 



Gauge Mapping: Homeomorphism for Convex Set

➢ Translating by 𝑥∘ ∈ int(𝒞)

➢ Scaling by 𝑠 𝑥∘, 𝑧 ∈ ℝ+

• Properties of Φ:
➢Continuous + Invertible → Homeomorphism

➢Bi-Lipschitz → Beneficial for algorithm [4]

• Computation of Φ:
➢Closed-form for common convex sets [1-2]

✓ Linear, quadratic, SOC, LMI.

➢Bisection for general compact convex set [3]

50

𝑑1

𝑑2

𝑥∘

𝛷 𝑧 = 𝑥∘  +  𝑠 𝑥∘, 𝑧 ∙ 𝑧 𝑠 𝑥∘, 𝑧 = 𝑑2/𝑑1

𝑧

[1] Tabas, D., & Zhang, B. Computationally efficient safe reinforcement learning for power systems. IEEE ACC 2022.
[2] Tordesillas, J., How, J. P., & Hutter, M. Rayen: Imposition of hard convex constraints on neural networks. arXiv 2023.
[3] Mhammedi, Z. Efficient projection-free online convex optimization with membership oracle. COLT 2022.
[4] X. Li*, E. Liang*, M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set.”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award
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[1] Xie, T., Zhu, Y., Yu, L., Yang, T., Cheng, Z., Zhang, S., ... & Zhang, C. Reflected Flow Matching. ICML. 2024.

Approximation Error

• 𝐿𝜃: Lipschitz of NN-based vector field

• 𝜖𝜃: 𝑙2 flow matching loss over ball

• 𝐿Φ: Lipschitz of gauge mapping
• Reduced by selecting a “central” interior 

point 𝑥∘ ∈ int(𝒞)

Inference Complexity

• NFE: num of function evaluation

• 𝑛: dimension of data 

• 𝑚 ∙ 𝐶 : gauge mapping calculation
• 𝑚: num of constraints 𝑔𝑖 𝑥 ≤ 0 𝑖=1

𝑚

• 𝐶: same order of complexity to calculate 𝑔𝑖 𝑥  

𝒪(NFE ∙ 𝑛2 + 𝑚 ∙ 𝐶)𝒲2 𝑝data, 𝑝𝜃 ≤ 𝐿Φ ∙ 𝑒0.5+𝐿𝜃 ∙ 𝜖𝜃

RFM error [1] Regular FM complexity

Bounded approximation error + minor additional complexity
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Low-dim Toy Example Scalability of Gauge Mapping

Simple constraints

Joint linear + quadratic constraints

  
    

  
  

  
    

  
  

  
    

  
 

 
 

 
 

 
 

 
 

 
  

         

 
  

 
  
 
 

   

         

   

      

  
  

  
  

  
 

  
 

  
 

  
 

  
 

  
   

 

           

 
  

 
  
 
 

   

         

   

      

Constraints dimension

Input sample size



Summary
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Takeaway messages

• Bijective gauge mapping for 
general compact convex set

• Enable low-complexity
constrained generation

Future works

• Extend to non-convex set
• Star/geodesic-convex set [1]

• Ball-homeomorphic set [2]

• One-step generation
• Constrained distillation/consistency

• More real-world applications

[1] X. Li*, E. Liang*, M. Chen, “Gauge Flow Matching for Efficient Constrained Generative Modelling over General Convex Set.”, ICLR 2025 Delta Workshop. Outstanding Short Paper Award
[2] X. Li, E. Liang*, M. Chen*, “Gauge Flow Matching: Efficient Constrained Generative Modelling over General Convex Set and Beyond.”, ICLR 2026 
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Supplementary Slides

Supplementary Slides
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[1] Dontchev, A. L., & Rockafellar, R. T. (2009). Implicit functions and solution mappings (Vol. 543). New York: Springer.

□ Convex optimization
– Strongly convex (e.g., QP)

• Continuous solution mapping

– General convex (e.g., LP)

• Continuous (a.e.) solution mapping

□ Continuous optimization
– Unique solution

• Continuous solution mapping

– General continuous

• “Continuous” solution mapping

– Set-valued mapping



Feasibility of Sequential Problems

56

□ Explicit-form constraints
– Deterministic sequential problems (e.g., MPC)

• Unroll it as a large CO / utilize problem structure

– Stochastic sequential problems (e.g., MSP)
• Sampling ⟹ det. problem ⟹ feasibility with prob.

– Infinite horizon problem (e.g., Stability)
• Construct explicit safe state/policy set

□ Unknown, but can sampling 
– Constrained MDP

• Zero-duality gap

• Primal-dual algorithm

• Feasibility with prob.



Discrete & Combinatorial Problems 
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□ Solving continuous sub-problems

– Continuous relaxation + B&B/cutting-plane 
• ML to predict continuous problems [3]

• ML to accelerate B&B/cutting-plane [4-5]

□ Equivalent continuous formulation

– Motzkin-Straus formulation of Max-Clique problem
• Constrained indefinite quadratic program [1]

□ Relaxation + Recovering

– SDP relaxation + randomized rounding for Max-Cut problem 
• 0.879 approximation ratio [2]

[1] Gibbons, L. E., Hearn, D. W., Pardalos, P. M., & Ramana, M. V. Continuous characterizations of the maximum clique problem. MATH OPER  1997.
[2] M. X. Goemans and D. P. Williamson. .879-approximation algorithms for max cut and max 2sat. STOC 1994.
[3] Kool, W., van Hoof, H., & Welling, M. Attention, Learn to Solve Routing Problems!. ICLR 2019
[4] Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. Learning to branch in mixed integer programming. AAAI 2016
[5] Balcan, M. F., Dick, T., Sandholm, T., & Vitercik, E. Learning to branch. ICML 2018.



Equality and Inequality Constraint
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□ Constraint set: 𝒦𝜃 = {𝑥|𝑔 𝑥, 𝜃 ≤ 0, ℎ 𝑥, 𝜃 = 0}

– Algorithmic view:

• predict-then-reconstruct [1-2]
• 𝑥 = 𝑥1, 𝑥2

• ℎ 𝑥1, 𝜙 𝑥1 = 0
– Linear ⟹ linear mapping 𝜙

– Non-linear ⟹ implicit mapping 𝜙

• 𝒦𝜃
𝑠 = {𝑥|𝑔 𝑥1, 𝜙 𝑥1 ≤ 0}

– Topological view: 

• Constant-Level-Set Theorem [3]

• 𝒦𝜃 ≅ 𝒦𝜃
𝑠 ≅ ℬ

[1] Pan, X., Chen, M., Zhao, T., & Low, S. H. DeepOPF: A feasibility-optimized deep neural network approach for AC optimal power flow problems. IEEE SJ
[2] Donti, P. L., Rolnick, D., & Kolter, J. Z. DC3: A learning method for optimization with hard constraints. ICLR 2021
[3] Lee, J. M., & Lee, J. M. (2012). Smooth manifolds (pp. 1-31). Springer New York.



Distortion and Homeomorphic Mapping
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□ Distortion: D 𝜓 = 𝑘2/𝑘1 ≥ 1

– Ratio of max & min distance variations by 𝜓

– Exist multiple homeomorphic mappings between two sets 

– Bi-Lipschitz Constants: D 𝜓 = 𝐿𝑖𝑝 𝜓 ∙ 𝐿𝑖𝑝 𝜓−1

□ Minimum Distortion Homeomorphism (MDH)

– In Hom-PGD: 

• Small distortion ⟹ faster convergence speed

– In Hom-Proj:

• Small distortion ⟹ small opt. loss by HP

𝑘2 = sup
𝑧1,𝑧2

{
𝜓 𝑧1 −𝜓 𝑧2

||𝑧1−𝑧2||
} , 𝑘1 = inf

𝑧1,𝑧2
{

𝜓 𝑧1 −𝜓 𝑧2

||𝑧1−𝑧2||
}

𝜓1

𝜓2

Small distortion

Large distortion

𝜓𝜃

Small  distortion 𝜓𝜃
1 : 𝑥 = 𝜃𝑧

– D 𝜓𝜃
1 = 1

Large distortion 𝜓𝜃
2: 𝑥 = 𝜃R(||𝑧||)𝑧

– D 𝜓𝜃
2 ≈ 2.5



Calculation of Gauge Mapping II
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