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As climate change increases the frequency, intensity, and duration of heatwaves, under-
standing their impact on electricity grids is crucial for enhancing societal security and
resilience. We study the effects of heatwaves on European electricity grids using sev-
eral comprehensive real-world datasets. Moreover, noting that conventional modeling
of temperature effects on grid operation limits is insufficient or computationally chal-
lenging, we develop a novel temperature-dependent modeling framework that is both
comprehensive and efficient. We apply this method to evaluate the robustness of sev-
eral European electricity grids for projected heatwave scenarios for the next 5 years.
We identify concerning grid bottlenecks and substantial national differences in vul-
nerability: for example, while the Spanish grid exhibits temperature-induced capacity
bottlenecks that could jeopardize power supply during heatwaves, the German grid
shows remarkable resilience. These findings emphasize the need for temperature-aware
grid power flow analysis as well as the need for long-range planning to ensure energy
security despite climate-change induced future heatwaves.
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Fig. 1: Heatwaves reduce current capacity and induce transmission line bottle-
necks. a-c Physical properties of conductors based on IEEE Std 738T™_9012 under varying
weather conditions [1]. a Conductor temperature as a function of air temperature and line
current. b Conductor temperature variations with different wind speeds and angles. ¢ Line
current capacity under different air temperatures and wind speeds. d Line segment capacity
variations along a 130-km transmission line in Northwestern Spain crossing 9 gridded regions,
showing localized thermal constraints during heatwaves.

Introduction

Climate change has led to an increase in average global temperatures, characterized
by more frequent, intense, and prolonged heatwaves [2-5]. The escalating frequency
and severity of heatwaves impact millions of people worldwide [6] and pose signifi-
cant challenges to critical infrastructure [7, 8], including electrical power grids [9, 10].
A detailed understanding of these impacts on power grid performance is crucial for
evaluating and enhancing societal resilience and energy security.

Heatwaves create a triple threat to electrical grids. First, they substantially increase
cooling demand, driving up electricity consumption [4]. Second, they alter power
generation capacity through mechanisms such as wind energy shortages [11] and
generator capacity derating [12]. Third, they reduce transmission line capacity as con-
ductors approach their thermal limits (see Fig.la-c). Moreover, regional variations
in weather conditions create spatially heterogeneous thermal constraints along long-
distance transmission lines, with different segments experiencing different capacity
reductions (Fig.1d).
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Traditional power flow analyses inadequately capture these heatwave impacts.
Existing linearized optimal power flow (OPF) models, even those incorporating
weather-dependent dynamic line ratings [13], fail to represent the complex grid dynam-
ics that emerge under heavy cooling loads during extreme heat. More critically,
they do not precisely model temperature effects on generator capacity derating and
the segment-specific thermal constraints of long transmission lines [14]. This over-
sight leads to incomplete vulnerability assessments, as our European case studies
demonstrate.

We address these methodological limitations through a novel framework that
combines comprehensive heatwave-aware grid modeling approaches (Fig.2a) with an
efficient temperature-dependent alternating-current (AC) OPF analysis under future
heatwave projections (Fig.2b). Our approach introduces four key innovations: (i)
temperature-dependent electricity demand estimation and generation derating model-
ing, (ii) per-segment conductor heat balance modeling to determine thermal-dependent
capacity limits for transmission lines, (iii) probabilistic assessment using hundreds of
bias-corrected heatwave projections with geospatially-gridded weather profiles, and
(iv) an efficient iterative algorithm for temperature-dependent OPF analysis that
enables rapid evaluation of national grid resilience across these numerous scenarios.
Applying our framework to European electricity grids using publicly available weather
profiles, power demand models, renewable penetration scenarios, and grid parameters,
we reveal:

> We demonstrate that existing grid resilience analyses based on standard AC-
OPF approaches fail to adequately capture the combined effects of increased cooling
demand and reduced transmission capacity during heatwaves. Even more accurate
quadratic approximations for thermal constraints [15] still substantially underestimate
transmission line vulnerabilities under extreme heat.

> We formulate a temperature-dependent AC-OPF problem that simultaneously
incorporates temperature-dependent cooling loads, generator derating, and segment-
specific thermally-induced capacity limits for transmission lines, using hundreds of
heatwave projections with weather profiles at approximately 30km resolution. We
develop a novel iterative algorithm that solves this OPF problem more efficiently while
capturing critical nonlinear interactions missed by existing methods.

> Applying our framework to European grids reveals significant heatwave vulner-
ability. For example, by 2030, up to 4.8% of Spanish transmission lines are projected
to drop below 70% of their nominal current-carrying capacity—a typical security
constraint margin [16], highlighting the need for heatwave-aware grid management.
National-level impacts vary dramatically: the Spanish grid faces substantial load
shedding risk under extreme heat, while the German grid demonstrates remarkable
resilience. While these findings are based on the best available public data, we caution
that further validation with proprietary grid-specific datasets would strengthen these
estimations.

These findings underscore the urgent need for grid operators and policymakers to
consider the impacts of extreme weather more comprehensively in their planning and
management strategies. By doing so, they can enhance the reliability and resilience of
electricity supplies in the face of increasing climate change challenges.



86

87

88

89

90

91

92

93

o4

95

96

97

(@ Heatwaves

Transmission Cooling Generator | Renewable
capacity ¥ demand 4 derating [ fluctuation

=

@D )
=2 dap f 1

S based Cond Thermal Model: Demand Model Generation Models

ﬂ@ Thermal Limits

f. Power Grids ¢ Power Balance@ qrn'ii]

(=]

Storage Supply
b
OPF Analysis
National Power Grids - ﬂ';tﬁ:ﬂsw R:ﬁ‘::u::d
= 7\—“5«» 4c. Opy

Initial
solution

0 0 100

Projected Heatwaves from 2026 to 2030

Fig. 2: Framework for analyzing heatwave impacts on national power grids. a
Integration of segment-specific conductor thermal modeling, temperature-dependent demand,
weather-dependent renewable generation, and heatwave-induced generation derating to cap-
ture climate-power system interactions. b Proposed iterative algorithm solving temperature-
dependent AC optimal power flow under bias-corrected heatwave projections, identifying
capacity bottlenecks and potential load shedding regions during extreme heat events.

Results
Setup

We employ the modeling framework illustrated in Fig. 2a, with data source and
detailed methods included in Section 1, to evaluate how heatwaves impact existing grid
operations in European countries under projected future heatwave scenarios. We focus
our analysis on 2026-2030, a time horizon that reduces uncertainty in both climate
projections and grid infrastructure configurations while providing actionable insights
for near-term resilience planning and investment decisions. We conduct optimal power
flow (OPF) analyses using the proposed iterative algorithms in Fig. 2b, to investigate
whether national grids exhibit temperature-induced capacity bottlenecks, indicated by
transmission lines approaching their thermal limits and load-shedding regions—that
is, buses where power injection fails to meet consumption. Our work also compares the
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Fig. 3: Comparison of different OPF methods for analyzing the Spanish grid
under projected heatwaves. We compare basic AC-OPF, advanced Quad-OPF, our pro-
posed Iter-OPF, and the most accurate TD-OPF. a Weather and load statistics under
heatwave projections from 2026 to 2030, with 320 scenarios generated using a bias-correction
approach (detailed in Section 1.1). b—c Distributions of estimated line capacity reduction
compared to nominal conditions and line temperatures (derived from heat balance equations)
across different methods. d Distributions of load shedding ratios (demand-generation mis-
match over total demand). e Average per-scenario solving times.

accuracy of existing OPF analysis methods with our proposed approach in identifying
these critical bottlenecks while satisfying physical constraints.

Observations

We find that, as heatwaves simultaneously reduce transmission capacity, cause gen-
erator derating, and increase cooling demand, some European national grids, such as
Spain, France, and Italy, exhibit capacity bottlenecks in projected heatwave scenarios,
subsequently resulting in non-negligible load-shedding and potential human casual-
ties [17, 18]. This alerting observation emphasizes the need for temperature-aware grid
analysis and planning to mitigate heatwave risks and ensure energy security. In further
detail, we have the following observations:

Existing OPF models overestimate grid resilience under heatwaves
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We compare four OPF-based approaches: the standard alternating current OPF (AC-
OPF), a more advanced ACOPF with quadratic approximation of thermal limits
(Quad-OPF), our proposed iterative framework (Iter-OPF), and the most accurate
fully converged temperature-dependent ACOPF (TD-OPF). Detailed formulations are
in Section 1.5 and Supplementary Section 2.

Conventional methods substantially underestimate heatwave risks. AC-OPF
neglects thermal limits entirely, while Quad-OPF’s quadratic approximation fails to
precisely capture the complex nonlinear relationship between temperature and current-
carrying capacity (Fig.3b). Both methods permit line temperatures to exceed the
90°C thermal limit (Fig.3c), overestimating transmission capacity and underestimat-
ing load shedding (Fig.3d). Implementing generation plans based on these methods
during heatwaves could trigger line shutdowns or even cascading blackouts [17, 18].

Our Iter-OPF framework addresses these limitations. Like TD-OPF, it correctly
identifies load shedding regions and maintains safe line temperatures below 90°C.
Yet while TD-OPF requires over four times the computational cost of AC-OPF
(Fig. 3e), Iter-OPF achieves comparable accuracy at only twice the cost, enabling reli-
able resilience assessment across hundreds of weather scenarios for comprehensive grid
planning.

Complete thermal modeling is essential for accurate resilience
assessment under heatwaves

To assess the importance of different modeling components under heatwaves, we
conduct an ablation study systematically removing key elements from Iter-OPF:
conductor thermal models, segment-based modeling, and generator derating (Fig.4a—
b). We also compare these against the widely used 70% security margin SC-OPF
approach [16].

Conductor thermal modeling proves most critical. Removing it substantially
overestimates grid capacity, while segment-based modeling captures local thermal bot-
tlenecks that uniform approaches miss (Fig. 4a). Generator derating has comparatively
smaller impacts on system-level performance.

The 70% security margin approach [16], though commonly used, only partially
prevents line overheating (Fig. 4b). This fixed margin cannot avoid thermal viola-
tions because it neglects spatial heterogeneity in thermal conditions—actual capacity
can drop near 40% of nominal ratings during extreme heatwaves in localized hotspots
(Fig.3d). These results demonstrate that explicit temperature-dependent thermal
modeling is essential; conservative static margins alone are insufficient for reliable
heatwave resilience assessment.

Rising demand amplifies grid stress, yet energy storage alone
offers limited relief

We assess grid resilience sensitivity to future demand growth and energy storage
availability. With load growth rates from 1% to 3% annually from 2025, reflecting
emerging demands from Al infrastructure, electrified heating and cooling, and electric
vehicles [19, 20], load shedding increases proportionally with demand (Fig. 4¢). This



151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

b

15

~08- ave: O 125-
&3 0.68 I <
208~ 5 100- e
3 | O e A U O R
- o - o ave: ave: ave: ave:

204 - 1832 4833 48.35] 48.33] 48.55]
7] ave: ave: ave: ave: g - T \ ‘ \ ‘ \1 \ ‘
T go- 005 008 0.04 0.05 2 50- N Ny by Ay %
g N L ML 2, | | ] | |

00- = = = = =

oPF o ent G009 _.0PF .oPF ermal ent 2600 - .0PF
e wlo W (10 5ed™ (1o gera T SC et wlo W 10 529 1o g sC

c d

04- GR1% FXA GR2% GR 3% SoC0% XX SoC 50% SoC 100%
9 F06-
0.3 >
£ £
o B 0.
Go2- 3
F= =
» »
i 3
- . 7 -

00 LA, 55 SN

2026 2027 027 2028 2029 2030

Fig. 4: Sensitivity analysis of modeling components and environmental factors on
OPF analysis under heatwaves. a—b Impact of removing different modeling components
from the Iter-OPF framework on load shedding ratios and line temperatures, compared to
the 70% security margin SC-OPF method [16]. c—d Load shedding ratios under different load
growth rates (GR) and energy storage states (i.e., SoC).

positive relationship reveals that rising consumption patterns will directly amplify grid
stress during heatwaves.

On the other hand, varying energy storage state-of-charge (SoC) from 0% to 100%
yields only marginal reductions in load shedding (Fig. 4d). This counterintuitive result
arises because transmission constraints—not generation capacity—dominate grid vul-
nerability during extreme heat. Higher storage availability cannot compensate when
reduced line capacity prevents power delivery from storage units to demand centers.
This finding indicates that expanding the capacity of existing storage infrastruc-
ture alone cannot adequately mitigate heatwave impacts. Planning must combine
transmission upgrades and distributed flexibility to address thermal constraints
directly.

Grid vulnerability differs by country and cross-border ties are not
always helpful

Grid vulnerability to heatwaves varies dramatically across eight Western European
countries. French electricity grid shows severe thermal-induced capacity bottlenecks
during extreme heat, with average load shedding reaching 2% under projected heat-
waves (Fig.ha), potentially causing widespread power disruptions [17]. In contrast,
Germany, the UK, and other northern countries maintain full supply without load
shedding under the same projected scenarios (Fig. 5b).

Cross-border interconnections provide asymmetric benefits depending on neigh-
boring grid conditions. France experiences substantial relief from power sharing with
less-stressed neighbors—load shedding decreases by about 2% when interconnected
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capacity reduction compared to nominal ratings during heatwaves.

with Italy (Fig. 6b,d). Conversely, joint simulations of Spain with Portugal or France
show minimal relief because France faces similar thermal stress during concurrent
heatwaves and also because limited transmission capacity constrains power delivery
to stress centers (Fig. 6a,c). This disparity arises because interconnection effective-
ness depends on the spatial correlation of climate stress, available surplus capacity in
neighboring systems, and sufficient transmission infrastructure to deliver power where
needed.

These findings highlight that climate-resilient grid planning requires coordinated
European strategies. Countries facing severe thermal constraints need targeted infras-
tructure upgrades—particularly transmission capacity and cooling systems—while
strategic interconnections can provide mutual support where climate impacts are
spatially decorrelated.

Broader Implication

Our findings have immediate implications for European energy policy. Grid operators
should periodically re-evaluate resilience assessments using temperature-dependent
methodologies and the latest climate projections. Policymakers should combine
transmission upgrades in thermally vulnerable corridors—particularly in southern
Europe—rather than relying solely on storage expansion or demand response. The
spatial correlation of climate stress across borders further underscores the need for
pan-European coordination; interconnection benefits depend critically on whether
neighboring systems face concurrent thermal constraints.
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Fig. 6: Cross-border interconnections enhance grid resilience by enabling mutual
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connections on grid resilience. a—b Distribution of Load shedding ratio in Spain and France
across different interconnection scenarios. c—d Distribution of Line capacity reduction in
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Limitations

Whilst concerning, we note that our results rely on publicly available datasets for
FEuropean grids, which lack the granular detail accessible to grid operators. Addi-
tionally, although we use the best currently available locally bias-corrected weather
projections [21], these remain subject to revision as climate models improve. Simi-
larly, projecting cooling load patterns involves inherent uncertainties stemming from
evolving building efficiency standards, air conditioning adoption rates, and demand
response capabilities.

We focus on near-term scenarios (2026-2030) to reduce forecasting uncertainty;
longer-term climate impacts and grid vulnerabilities may be more severe. However,
future grid evolution—including increased renewable energy penetration, trans-
mission capacity upgrades, energy storage deployment, and other infrastructure
improvements—remains uncertain and could substantially alter these vulnerability
projections [22]. Our analysis, therefore, represents current grid configurations under
near-term climate scenarios rather than a long-term forecast of grid performance.

Our iterative algorithm has been validated against the fully converged TD-OPF
model, demonstrating numerical consistency with the underlying physical models.
However, the TD-OPF model itself has not been validated against real-world field
tests of line temperatures during heatwave events. Errors in the underlying physical
model or biased input data will propagate through our analysis.
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Given these limitations, grid operators should validate our findings against histori-
cal outage records and apply our methodology with their proprietary, higher-resolution
models and real-time operational data for more precise vulnerability assessments.

Discussion and Conclusion

Extreme heat poses a compound threat to electrical grids—simultaneously increasing
cooling demand, reducing generation efficiency, and degrading transmission capacity.
Yet existing assessment methods fail to capture these coupled dynamics or provide the
computational efficiency needed for probabilistic analysis across numerous climate sce-
narios. Current models also overlook the spatially heterogeneous, weather-dependent
thermal limits along individual transmission line segments.

We address these gaps with a framework integrating thermal modeling across
demand, generation, and transmission with geospatially-gridded climate projections.
Our iterative algorithm efficiently solves the temperature-dependent optimal power
flow problem while incorporating segment-specific thermal limits, capturing critical
nonlinear interactions that existing methods miss. Applying this framework to West-
ern European grids reveals substantial variation in national resilience: Germany’s
grid can withstand projected extreme heat, while Spain and France face significant
vulnerability to supply disruptions.

The heatwave-induced capacity bottlenecks identified by our work can be mit-
igated through three complementary approaches. First, demand response programs
in affected load centers can maintain grid integrity, though at the cost of consumer
inconvenience. Second, reconductoring vulnerable transmission lines—which our anal-
ysis specifically identifies—can increase capacity and resilience, though this requires
capital investment and significant lead time. Third, deploying grid-scale storage at
bottleneck locations could compensate for transmission limits during extreme heat
events, an approach that warrants investigation as storage costs continue to decline.

Climate change is accelerating while grid infrastructure evolves slowly. The meth-
ods and findings presented here provide a foundation for prioritizing adaptation
investments before the next extreme heatwave tests grid limits. Future work should
extend our framework to optimize adaptation investments under climate uncertainty,
incorporating cost-benefit analysis and long-term climate trajectories. Our analysis
relies on diverse datasets, not all of which are easy to obtain or process, such as
country-specific calibrated demand models. To support reproducibility and enable
broader application, we openly share our datasets, algorithms, and source code.

1 Methods

Data Sources

We employed multiple publicly available datasets covering European transmission
infrastructure, climate conditions, power demand, and renewable generation. The
European transmission network topology and parameters were derived from PyPSA-
Eur [16], an open-source model of the European energy system. Algorithm validation

10
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used standardized IEEE power flow benchmarks from PGLIB [23]. Historical cli-
mate data were obtained from ERAS [24], providing hourly meteorological fields at
0.25°x0.25° resolution from 1940 to present. Future climate projections were sourced
from the Copernicus Climate Change Service Energy dataset [25], covering 2005-2100
with temperature, solar irradiance, and wind velocity fields. Historical electricity
demand profiles were extracted from ENTSO-E Power Statistics [26]. Weather-
dependent demand variations were modeled following Demand.ninja [27]. Renewable
generation potentials and time series were computed using Atlite [28].
Comprehensive dataset descriptions are provided in Supplementary Table 1.

Models and Algorithms

We developed a comprehensive framework to assess transmission grid resilience under
extreme heatwaves, integrating heatwave projection, demand modeling, and optimal
power flow analysis. As depicted in Fig. 2, the framework comprises:

¢ Future Heatwave Projection (Sec. 1.1): Generates multiple projected heatwave
events for 2025-2030 based on historical events from 2019 and 2022.

¢ Future Demand Modeling (Sec. 1.2): Simulates power demand under varying
annual growth rates using a weather-dependent model from Demand.ninja [27].

¢ Generator Derating Modeling (Sec. 1.3): Quantifies reduced generator effi-
ciency due to elevated ambient temperatures during heatwaves.

® Renewable Generation: Calculates renewable generation potential under pro-
jected weather conditions using Atlite [28].

e Transmission Line Thermal Modeling (Sec. 1.4): Quantifies temperature
effects on conductor properties and thermal limits, including multi-bundle line
derating and segmented analysis to identify localized stress points.

¢ Optimal Power Flow Analysis (Sec. 1.5): Integrates these components to sim-
ulate grid response under thermal and demand stresses, revealing critical capacity
constraints and vulnerability zones.

1.1 Future Heatwave Modeling

We adopt future reference climate variables based on the bias-corrected European
regional climate model, CORDEX, under the RCP 4.5 scenario for the European
domain [25]. However, these reference climate data are averaged over three-hour
intervals and lack prediction uncertainty intervals, thus inadequately capturing
shorter-duration extreme heat events.

To address this limitation, we apply a “morphing” approach to artificially create
future heatwaves based upon historical weather observations [29, 30]. This approach
preserves the spatial structure and diurnal patterns of historical heatwaves while shift-
ing the temperature baseline, though it assumes that heatwave dynamics will remain
qualitatively similar under future climate conditions. This approach has often been
used for the analysis of building energy use or assessing resilience under different future
climate scenarios [31].

We first select temperature profiles from historical heatwave events in the hourly
ERAS reanalysis dataset, denoted as Tﬁg:t, and the historical reference temperature

11



296

297

298

299

300

301

302

303

304

305

306

o

Historical reference —-- Historical heatwave Future reference —-- Future heatwave
—_
O 40 —— -
Y e = I N S N -
2 = e -~
5 30 e TS T
2 ——— o ——
£ — s
- oA~ L — —
=20
<

0 1 2 3 4 5 6 7 8 9 10 MM 12 13 14 15 16 17 18 19 20 21 22 23

Hour
b
Historical reference Historical heatwave Future reference Future heatwave
_\‘-.,- E e | 5 ——— | B e
/ /
I
T T T T T T T T T T T
20 23 26 29 32 35 38 41 44 47 50
Air temperature (°C)
c
o Reference Heatwaves o Reference Heatwaves o Reference Heatwaves
250 Region 1 £ 50 Region 2 £ 50 Region 3
[ [ [
e e e
240 240 240
© © ©
] ] ]
Q.30 - Q.30 2 30
£ £ £
Q Q Q
20 20 =20
= = =
< 4 8 12 16 20 < 4 8 12 16 20 < 4 8 12 16 20
Hour Hour Hour

Fig. 7: Projected 2030 heatwaves in Spain derived from 2022 observations. a
Morphing approach for projecting future heatwaves. Delta values calculated from a historical
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heatwaves compared to historical events and reference profiles. The morphing approach pre-
serves spatial and temporal patterns from historical events. ¢ Generated 2030 heatwaves
based on delta values from five historical hottest days in July 2022. Profiles for three areas
are shown separately.

data, Tr}gfs, on the same historical date. To derive the projected future hourly heat-

wave scenarios 71U from the future reference temperature T, we calculate it as
fut __ pfut his his : s 1
Tiat, = T8+ (T8, —T¢), where the low-resolution 3-hourly reference data is linearly

interpolated to generate a complete 24-hour time series for this calculation.

The projected future heatwave exhibits a similar temperature increase relative
to the historical reference (Fig 7a) while preserving the spatial features at each
longitude-latitude grid (Fig 7b). Furthermore, we collect a set of such bias values (i.e.,
(This — This)) based on different historical heatwave records, to present a historical
distribution of extreme weather patterns (Fig 7c). This approach allows us to capture
the diversity of potential heatwave manifestations while maintaining their inherent
spatial characteristics in our future projections.
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Fig. 8: Heatwave impacts on load demand, generator efficiency, and transmis-
sion capacity. a Calibrated temperature-dependent demand model for Spain following
Demand.ninja [27], where BAIT indicates building-adjusted internal temperature depending
on multiple weather variables. b Generator derating model for various common generators,
where higher ambient temperature induces lower generation efficiency due to different mech-
anisms. ¢ Conductor thermal models based on heat balance equations, where the nominal
current capacity is determined under thermal limits in ambient conditions; as air tempera-
ture increases, the current limits decrease.

1.2 Future Demand Modeling

We employ a weather-dependent demand model following Demand.ninja [27] to
simulate future daily demand as follows:

Pd = Pbasc + Phcat [Thcat - BAIT]Jr + Pcool [BAIT - ch)oﬂjL +alWW + BD + €,

where base load Pp,se denotes the base demand (in GW), Pyeat and P.oo are heating
and cooling coefficients (in GW/°C'), Theat and Teoe1 are heating and cooling thresholds
(in °C), and BAIT denotes the building-adjusted internal temperature derived from
[27], which depends on specific weather conditions such as air temperature, relative
humidity, wind speed, and solar radiation. « is a time-dependent coefficient (in GW),
representing the impacts of differences in workdays (W = 1) and weekends (W = 0),
B (in GW/yr) captures the long-term yearly trends in power demand, and e is the
model error term. After generating daily power demand, we convert it to an hourly
resolution based on the historical average hourly demand ratios observed during hot
days, following [27].

We follow the methodology [27] to calibrate demand models for EU countries
in our case study. For future scenarios, we incorporate varying annual growth rates
(8) to model different load projections. This approach accounts for unprecedented
grid challenges from Al technologies, smart homes, and electric vehicles, which will
significantly alter historical demand patterns [19, 20]. By adjusting these growth rates,
we evaluate grid performance under various electrification scenarios, from moderate
to aggressive technology adoption.

1.3 Generator Derating Modeling

Heatwave-induced high temperatures also derate generator capacity. For renewable
generators, such as solar generation, the Atlite package [28] is employed to con-
vert weather data into renewable power generation profiles. For Gas Turbines (GT)
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and Combined-Cycle Gas Turbines (CCGT), the density of input air decreases with
increasing ambient temperature, resulting in more fuel needed to compress the same
amount of air mass [12]. Nuclear power generators experience capacity decreases at
high temperatures due to their reliance on water cooling systems to prevent overheat-
ing [32]. For Electric Generators with copper windings, elevated temperatures increase
winding resistance, inducing Joule heating and reducing efficiency [33]. We then sum-
marize the capacity derating factor n < 1 for some conventional generators under
ambient temperatures T,y using:

(—0.6854 T, + 110)/100 (GT)
. (—0.3427 Ty, + 105)/100 (CCGT)
Generator derating 1= (10} 3042 0.1387T,,-0.001072, ,)/100 (Nuclear)

180—Tamb)[14+0.0039(40—20 . qs
\/((180—40()[1:)-[0.3039( Timb—20))]] (VTamp > 40)  (Copper windings)

These coeflicients of derating curves depend on the detailed manufacturing configu-
rations of different generators and can be adjusted under different real-world systems
[12, 32, 33].

1.4 Conductor Thermal Modeling

Heatwaves also reduce transmission capacity in power grids by affecting the thermal
behavior of overhead conductors. This physical phenomenon can be modeled by the
steady-state heat balance equation, which accounts for the equilibrium between heat
generated by electrical current and solar radiation, and heat lost through convection,
radiation, and conduction.

Heat Balance Equations

The standard steady-state heat balance equation according to IEEE Std 738T-2012
[1] used in our study is as follows:

He+Hp=Hg+H; [W/m], (1)
—_—
heat loss heat gain
where
3.645p9c‘5D0‘75 (T — Tamb)l'25 , (zero wind speed) ;
He = max { K, [1.01 n 1.35N§-§2} Af (T = Tamp),  (low wind speed) ;
0.754K 4 N3t (T — Tapn) » (high wind speed) ;

Hp = 705 D0em; [(T +273)* — (T, + 273)4]
HS = aabsDS
H;= IZR(T) = Ieref(l + ar (T — Tref))

Here, given the conductor physical properties (conductor diameter D, emissivity
factor aemi, absorptivity factor aips, resistance coefficient «., unit reference resistance
R,of) and environmental variables (conductor temperature 7', ambient temperature
Tamb, air density py, air thermal conductivity Ay, wind angle factor Ky, Reynolds

number Nge, solar radiation S, and constant dg), the heat balance equation solves
for the equilibrium conductor temperature that balances heat inflow and outflow.
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The heat transfer components include convective heat loss H¢, radiative heat loss
Hp driven by temperature difference, solar heat gain Hg, and Joule heat gain Hj
from conductor current I and temperature-dependent unit resistance R(T'). Detailed
parameter definitions are provided in Supplementary Table 7.

For simplicity, we denote the implicit mapping from conductor current to equilib-
rium conductor temperature as T = H(I, W), where W includes all environmental
variables shown above, such as air temperature and wind speed. We remark that the
mapping from current to equilibrium temperature is a single-variable monotonic map-
ping, i.e., higher current leads to higher conductor temperature given identical weather
variables. Thus, it can be efficiently solved using the bisection or Newton’s method.

Multi-Bundle Modeling

In practice, multi-bundle transmission lines are commonly used for high-voltage trans-
mission grids, which complicates thermal modeling due to mutual interactions between
conductor bundles. Conductors within a bundle experience reduced cooling when posi-
tioned in the wake of neighbors, with finite-element simulations showing temperature
variations of 5-25°C between individual bundles in common four-bundle transmission
lines [34]. Two simplified modeling approaches are commonly used. Individual conduc-
tor modeling treats each bundle independently, overestimating capacity by neglecting
mutual thermal shielding [16]. Merged conductor modeling combines bundles into a
single equivalent line, underestimating capacity by ignoring inter-bundle convective
cooling.

Following finite-element analysis results showing 5-25°C temperature elevations
in shielded conductors within four-bundle configurations [34], we apply a reduction
factor of 0.8 to convective and radiative cooling terms as 0.8(H¢ + Hr) = Hg +
H . Specifically, under worst-case ambient conditions (0.6 m/s wind, 900 W/m? solar
irradiance) [35], this predicts the 90°C thermal limit at 25°C ambient temperature,
falling between the two simplified approaches with approximately 15°C difference from
the optimistic individual conductor model, consistent with finite-element simulations
showing temperature variations of 5-25°C [34]. This approximation captures inter-
bundle thermal shielding effects without requiring computationally expensive finite-
element simulations for each line segment.

Multi-Segment Modeling

Heatwaves further induce spatially heterogeneous effects on grid transmission capacity,
especially for long-distance transmission lines. To capture these varied impacts, we
compute the intersection of transmission lines with grid lines embedded in weather
datasets such as ERA5 (see Fig. 1b). Segments within a single grid cell share the power
flow and current, but have different resistances due to thermal effects under various
local weather conditions, such as wind speed and solar radiation. For each link, the
multi-segment model satisfies the following equations:

Heat balance equations Tj ¢ = H(I;, W, ), Vs € 5 (2)

Conductor thermal limits T} , < T, Vs € S (3)

Transimision line resistance R; = Z dis - R(T}5), (4)
SES;

15



397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

The conductor temperature for each segment s € S; from line ! in Equation (2) is
derived from the heat balance equation (Equations (1)) based on local weather condi-
tions. Segment temperature 7} 5 is constrained by the transmission line’s thermal limit
™ (e.g., 90°C for ACSR conductors) in Equation (3). The total line resistance equals
the sum of segment resistances as shown in Equation (4), where d; s is the segment’s
length and R(T) is the temperature-dependent unit resistance. Consequently, branch
flow is limited by the segment with the highest temperature. This approach is com-
patible with any gridded weather dataset, allowing our segmented transmission model
to automatically improve in accuracy as weather data becomes more fine-grained.

The comprehensive formulations and discussions for the above thermal models are
included in Supplementary Section 4.4.

1.5 Optimal Power Flow Analysis

The Optimal Power Flow (OPF) problem is a fundamental component in electricity
grid operations and vulnerability analysis. It aims to determine the most efficient oper-
ating conditions for an electrical power system, ensuring that power generation meets
the demand while minimizing operational costs and adhering to system constraints.

For different planning horizons, power grid optimization can be categorized into
three types: (1) planning problem, which addresses long-term infrastructure devel-
opment decisions over years to decades; (2) short-term set-point dispatching, which
focuses on day-ahead to hour-ahead scheduling of generation resources; and (3)
real-time control, which manages immediate system adjustments within minutes to
maintain stability and reliability. Each timescale presents distinct objectives, con-
straints, and computational requirements while sharing the fundamental goal of
optimal resource allocation.

In the context of grid vulnerability analysis, we employ hourly single-snapshot
OPF simulations to systematically identify grid bottlenecks during extreme weather
events. By solving the OPF problem at each hour during extreme periods, we can
pinpoint transmission lines, generators, and other components that consistently reach
their operational limits, representing critical vulnerabilities in the system. This tem-
poral granularity allows us to capture the dynamic nature of both electricity demand
patterns and environmental impacts, particularly during heatwaves when thermal
constraints become increasingly binding.

We first introduce the standard single-snapshot alternating-current OPF (AC-
OPF) problem in Sec. 1.5 and extend to include conductor thermal modeling in
Sec. 1.5, contingency security constraints in Sec. 1.5, and optimization with storage
units in Sec. 1.5.

Baseline OPF Methods. To our knowledge, the most standard OPF formulation
based on the Alternating Current (AC) model is AC Optimal Power Flow (AC-OPF)
[36]. It is a non-linear, constrained optimization problem that incorporates both the
physical laws governing power flow and the operational limits of the grid compo-
nents. Given hourly load demand {P? Q%} and grid parameters, we solve the power
generation {P,Q} and complex-form voltage {V'} as follows:

AC-OPF: min > 5 ey Py, (5)
ieN keg;
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s.t.
S ey
ST A e
Line power flow limits [V; (Vi — V;) Yi;) " | < SIF™, V(i 4) € £, -
Generations limits P, . € [Pl’rf;cinv ik ] Qi € [QflicanTI?x], Vie N, VkeG;, (8)
Voltage limits  |Vi| € [Vir™, Vin™], |£Vig| < Va™™, Vi e N, V(i 5) € £, (9)
var. P7Q7 a'nd V

Power flow balance

,VieN, (6)

The objective function in (5) represents total generation cost, calculated as a lin-
ear function of power generation and individual generator costs (¢; ). The non-linear
power flow balance constraints in (6) ensure power injection and load are balanced at
each bus, where Y;; is the transmission line admittance. The line flow limits (57;**) in
(7) enforce thermal limits of transmission lines under static conditions. Operating lim-
its for power generation (PZ“};“, P, ?},in, 1), voltage magnitude (Vmin y/max)
and voltage angles (V%) are specified in (8)—(9).

Compared with Linear or DC-OPF formulations [37], which neglect temperature-
dependent resistance and Joule heating losses in transmission lines, AC-OPF more
accurately captures the physical behavior of power transmission systems [38] and
enables the incorporation of heat flow analysis.

OPF under Heatwaves. Standard AC-OPF neither incorporates the impact of
weather on the electrical network’s parameters, such as resistance, nor the dynamic
thermal limits of transmission lines. Temperature-Dependent AC Optimal Power Flow
(TD-OPF) [14, 38, 39] extends it by incorporating heat flow equations and temperature
constraints in Sec. 1.4. AC-based TD-OPF is formulated as follows:

TD-OPF: min (5)
s.t.

ACOPF constraints  (6) — (9),
Heat flow constraints (2) — (4), VI = (i,7) € L,
Line current flow I} = [(V; — V})Y;;], VI = (i,j) € L, (10)
Line admittance Y; =1/(R;+i-X;), Vi = (i,5) € L, (11)

var. P,Q, and V.

In this formulation, standard AC-OPF constraints and heat flow constraints are
coupled through line current magnitude in (10) and temperature-dependent line admit-
tance in (11), where R; is the line resistance and X is the line reactance. The current
flow generates Joule heating H;, which increases conductor temperatures. The con-
straints from (2) to (4) model heat transfer in individual transmission line segments
under varying local weather conditions, ensuring permissible steady-state conductor
temperatures that determine line current-carrying capacities. The interdependence of
electrical and thermal constraints in the TD-OPF model more accurately captures
physical grid behavior than linearized models during heatwaves.

Load Shedding Analysis. We implement all operational constraints as hard con-
straints in our optimization formulation, ensuring that transmission line flows cannot
exceed the specified limits (whether 70% or 100% of thermal capacity). To assess grid
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bottlenecks under safety operation conditions, we introduce slack variables represent-
ing load shedding in the power balance equations and add a large penalty term for
load shedding in the objective function. This approach allows the model to identify
when and where the grid cannot meet demand while respecting security constraints,
providing quantitative measures of grid vulnerability during heatwave events.

Security Contingency Analysis. Beyond modeling weather-induced thermal
limits in AC-based TD-OPF, N-1 security constraints are widely implemented to
enhance grid operation robustness by ensuring system stability following any single
line outage [40]. These constraints require that all operational limits remain satisfied in
both the base case and all post-contingency states. The base case and post-contingency
states are coupled through generator ramping constraints: preventive formulations fix
real power generation dispatch across all states, while corrective formulations permit
decision variables to adjust within prescribed ranges following contingency occurrence.

Computational complexity scales linearly with the number of contingencies,
motivating research into simplified security constraint formulations. Two common
approaches prevail in the literature. The first applies a fixed percentage reduction (e.g.,
70%) to thermal limits within AC-OPF models, establishing implicit safety margins
without explicit contingency enumeration [37]. The second integrates linearized secu-
rity constraints based on Line Outage Distribution Factors (LODFs) to approximate
contingency impacts within DC-OPF frameworks [41].

We adopt different approaches depending on system scale and data availability.
For the IEEE 30-bus test system (Supplementary Section 3), we implement standard
N-1 preventive security-constrained AC-OPF under heatwave conditions, leveraging
its complete topology and system parameters while maintaining computational feasi-
bility. For larger-scale European country-level analysis, we adopt the established 70%
fixed security margin approach from PyPSA-Eur [37]. This choice reflects two practi-
cal constraints: network clustering introduces an incomplete topology that precludes
rigorous contingency definition, and explicit contingency modeling at a continental
scale imposes a prohibitive computational burden for AC-based formulations.

Impact of Storage and State of Charge. The expanding deployment of dis-
tributed energy storage offers potential for mitigating local capacity constraints and
absorbing renewable generation variability through strategic charging and discharg-
ing. However, directly incorporating these temporal dynamics into AC-based TD-OPF
presents significant methodological challenges: Solutions become dependent on state-
of-charge initialization, require extended time horizons spanning days to years to
capture storage behavior under variable weather conditions, and substantially increase
computational complexity.

To balance analytical rigor with computational tractability, we adopt a simplified
approach. Using existing storage infrastructure configurations from PyPSA-Eur-
derived grid data (see Supplementary Table 5 for details), we implement a baseline
scenario assuming 50% initial state of charge—a moderate assumption representing
typical operational conditions. We complement this baseline with comprehensive sen-
sitivity analyses across the full range of storage states (0%—-100%) to characterize how
storage availability affects system vulnerability. Results show that even at 100% state
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of charge, storage provides only marginal relief from load shedding (Fig. 4d), indicat-
ing that transmission constraints—mnot storage capacity—dominate grid vulnerability
during extreme heat. Under this framework, storage units function as dispatchable
generators in our single-snapshot analysis of extreme heatwave conditions.

The comprehensive problem formulations for different OPF problems are included
in Supplementary Section 2.

1.6 Algorithm Design

For standard AC-OPF, Interior Point Methods (IPMs) have demonstrated effective-
ness across various IEEE test scenarios [23, 42]. Extending these methods to solve
AC-based TD-OPF markedly increases complexity due to the interdependence of
electrical and thermal constraints.

Existing Algorithms
Existing studies adopt different approximation methods to solve AC-based TD-OPF

® Linear approximation (DC-OPF and TD-DC-OPF): This approach linearizes the
nonlinear constraints in AC-OPF and incorporates weather-dependent dynamic line
ratings [13, 14, 43]. However, it generally overlooks the interactions between heat
flow and power flow, leading to substantial inaccuracies in the resolved power flows.

e Quadratic approximation (Quad-OPF): It uses a quadratic function to estimate
steady-state conductor temperature [15], expressed as T. ~ [y + B11? + BoI*
with weather-dependent coefficients {3, 51, 82}. This simplified version of the heat
balance equation is then integrated into the standard AC-OPF model.

While these approximations enhance computational efficiency, they often fail to fully
satisfy physical constraints on heat and power balance equations, particularly under
stringent temperature-induced thermal constraints. These methods frequently over-
look potential capacity constraints, resulting in inaccuracies when evaluating grid
performance under extreme weather scenarios.

Despite these advancements, developing an efficient algorithm capable of solv-
ing AC-based TD-OPF models while satisfying all physical constraints has been a
significant gap that we address in this work.

Proposed Iterative Analysis (Iter-OPF)

In this work, we propose a novel iterative framework for efficiently solving AC-based
TD-OPF. As illustrated in Figure 2b and detailed in Algorithm 1, this algorithm
employs two key steps that improve computational efficiency and solution accuracy.

e First, we convert steady-state conductor temperature constraints into equivalent
conductor current constraints based on local segment weather conditions [13, 43]:

' =+/(He + Hg — Hg) /(R(T™2)), VI = (i,j) € L, Vs € S (12)
I = (Vi = Vy)Yi| < min {175}, W= (i,j) € £ (13)
se€d;
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Algorithm 1 Iter-OPF Analysis

Data: Weather data, conductor thermal model, and power grid model.
Result: Grid operational states under heatwaves.
For each segment, given the gridded weather data, transform the temperature limit to the
current constraint as Equation (12).
For each line, select the minimum current limit among segments as the line current constraint
as Equation (13).
while conductor temperature not converge do
Update temperature-dependent admittance for every segment as Equation (11).
Aggregate segment admittance into line admittance as Equation (4).
Solve AC-OPF with updated admittance and current constraints (13) via IPOPT.
Update the line current derived from the OPF analysis as Equation (10).
Solve heat flow equations in (1) for all segments via Bisection methods.
Update the segment temperature derived from heat flow equations.

end

This strictly enforces line thermal limits under temperature conditions while elim-

inating explicit steady-state temperature expressions, effectively decoupling heat
and power balance equations.

e inspired by decoupling approaches for TD power flow equations [38, 44], we develop
an alternating update mechanism where (i) AC-OPF is solved with additional cur-
rent constraints from (13) and (ii) heat balance calculations are conducted in parallel
for each segment. Empirical evaluations indicate that two iterations typically achieve
results within 0.1% of fully converged solutions for both load shedding and line
temperature metrics.

By decoupling heat and power balance constraints, our algorithm enables flexible
and precise assessment of grid conditions under diverse thermal and electrical proper-
ties. This approach fills a critical gap in OPF studies by efficiently solving AC-based
TD-OPF while maintaining physical accuracy, thereby enabling rigorous grid analysis
for policy decisions during extreme weather events. As climate variability increasingly
threatens grid stability, such tools become essential for utilities to predict and mitigate
thermal stress on transmission systems.

European Simulation Overview

To investigate European electricity grid resilience under projected future heatwaves,
we integrate grid and weather data using our modeling framework to conduct OPF
analysis for Western Europe, with detailed settings in Supplementary Section 4.

We focus on eight Western European countries (Spain, Portugal, France, Italy,
Germany, Belgium, the Netherlands, and the UK) impacted by historically recorded
heatwaves in 2019 and 2022 (Supplementary Table 3). Using the PyPSA-Eur frame-
work, we derive the power grid configurations detailed in Supplementary Table 4 and
Supplementary Table 5.

For network resolution, we adopt a clustered grid that merges nearby buses and
lines to mitigate local modeling inaccuracies, such as mis-assignment of loads and
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under-representation of underground cabling, reducing error-induced bottlenecks [16].
All under-construction lines are included to enhance grid connectivity and provide a
more optimistic assessment of capacity under stress [16]. We standardize transmission
lines to “Al/St 240/40 4-bundle 380.0” (Aluminium/Steel cross-section 240/40 mm?, 4-
bundle configuration at 380 kV) [16, 45]. Thermal limits are set at 90°C for Aluminum-
type conductors, within the typical 80-120°C operating range [15, 35, 46-49].

Since PyPSA-Eur data are designed for DC/linear dispatch models, we augment
them for OPF simulations. Voltage magnitude is constrained to 0.95 < V,, < 1.05
following grid standards [23]. Reactive power demand is set proportional to active
power (Qq = 0.15 - P;) following EnerPol recommendations [50]. We relax other AC-
OPF constraints, such as reactive generation capacity and branch phase angle limits,
as this information is not available in existing generator profiles [13].

In summary, our model adopts a conservative approach by using an aggregated
network topology with relaxed constraints, enabling exploration of upper limits of
grid performance and identification of potential bottlenecks under extreme conditions.
These insights pinpoint areas requiring more stringent controls under actual opera-
tion. Our framework can also incorporate additional constraints with realistic data for
more accurate evaluations, as demonstrated by exact solutions for the IEEE 30-bus
benchmark (Supplementary Section 3) alongside the EU analysis.
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Data availability

The results from the model that support the findings of this study are presented in the
main text and Supplementary Information. The data used for validation are publicly
available from the sources in Supplementary Table 1.

Code availability

The Iter-OPF algorithm developed in this study is available in the GitHub repos-
itory (https://emliang.github.io/HEAT-GRID/webpage/). The code is implemented
in Python and can be accessed for replication and further research.
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