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As climate change increases the frequency, intensity, and duration of heatwaves, under-12

standing their impact on electricity grids is crucial for enhancing societal security and13

resilience. We study the effects of heatwaves on European electricity grids using sev-14

eral comprehensive real-world datasets. Moreover, noting that conventional modeling15

of temperature effects on grid operation limits is insufficient or computationally chal-16

lenging, we develop a novel temperature-dependent modeling framework that is both17

comprehensive and efficient. We apply this method to evaluate the robustness of sev-18

eral European electricity grids for projected heatwave scenarios for the next 5 years.19

We identify concerning grid bottlenecks and substantial national differences in vul-20

nerability: for example, while the Spanish grid exhibits temperature-induced capacity21

bottlenecks that could jeopardize power supply during heatwaves, the German grid22

shows remarkable resilience. These findings emphasize the need for temperature-aware23

grid power flow analysis as well as the need for long-range planning to ensure energy24

security despite climate-change induced future heatwaves.25
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Fig. 1: Heatwaves reduce current capacity and induce transmission line bottle-
necks. a-c Physical properties of conductors based on IEEE Std 738TM-2012 under varying
weather conditions [1]. a Conductor temperature as a function of air temperature and line
current. b Conductor temperature variations with different wind speeds and angles. c Line
current capacity under different air temperatures and wind speeds. d Line segment capacity
variations along a 130-km transmission line in Northwestern Spain crossing 9 gridded regions,
showing localized thermal constraints during heatwaves.

Introduction26

Climate change has led to an increase in average global temperatures, characterized27

by more frequent, intense, and prolonged heatwaves [2–5]. The escalating frequency28

and severity of heatwaves impact millions of people worldwide [6] and pose signifi-29

cant challenges to critical infrastructure [7, 8], including electrical power grids [9, 10].30

A detailed understanding of these impacts on power grid performance is crucial for31

evaluating and enhancing societal resilience and energy security.32

Heatwaves create a triple threat to electrical grids. First, they substantially increase33

cooling demand, driving up electricity consumption [4]. Second, they alter power34

generation capacity through mechanisms such as wind energy shortages [11] and35

generator capacity derating [12]. Third, they reduce transmission line capacity as con-36

ductors approach their thermal limits (see Fig.1a-c). Moreover, regional variations37

in weather conditions create spatially heterogeneous thermal constraints along long-38

distance transmission lines, with different segments experiencing different capacity39

reductions (Fig.1d).40
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Traditional power flow analyses inadequately capture these heatwave impacts.41

Existing linearized optimal power flow (OPF) models, even those incorporating42

weather-dependent dynamic line ratings [13], fail to represent the complex grid dynam-43

ics that emerge under heavy cooling loads during extreme heat. More critically,44

they do not precisely model temperature effects on generator capacity derating and45

the segment-specific thermal constraints of long transmission lines [14]. This over-46

sight leads to incomplete vulnerability assessments, as our European case studies47

demonstrate.48

We address these methodological limitations through a novel framework that49

combines comprehensive heatwave-aware grid modeling approaches (Fig.2a) with an50

efficient temperature-dependent alternating-current (AC) OPF analysis under future51

heatwave projections (Fig.2b). Our approach introduces four key innovations: (i)52

temperature-dependent electricity demand estimation and generation derating model-53

ing, (ii) per-segment conductor heat balance modeling to determine thermal-dependent54

capacity limits for transmission lines, (iii) probabilistic assessment using hundreds of55

bias-corrected heatwave projections with geospatially-gridded weather profiles, and56

(iv) an efficient iterative algorithm for temperature-dependent OPF analysis that57

enables rapid evaluation of national grid resilience across these numerous scenarios.58

Applying our framework to European electricity grids using publicly available weather59

profiles, power demand models, renewable penetration scenarios, and grid parameters,60

we reveal:61

▷ We demonstrate that existing grid resilience analyses based on standard AC-62

OPF approaches fail to adequately capture the combined effects of increased cooling63

demand and reduced transmission capacity during heatwaves. Even more accurate64

quadratic approximations for thermal constraints [15] still substantially underestimate65

transmission line vulnerabilities under extreme heat.66

▷ We formulate a temperature-dependent AC-OPF problem that simultaneously67

incorporates temperature-dependent cooling loads, generator derating, and segment-68

specific thermally-induced capacity limits for transmission lines, using hundreds of69

heatwave projections with weather profiles at approximately 30km resolution. We70

develop a novel iterative algorithm that solves this OPF problem more efficiently while71

capturing critical nonlinear interactions missed by existing methods.72

▷ Applying our framework to European grids reveals significant heatwave vulner-73

ability. For example, by 2030, up to 4.8% of Spanish transmission lines are projected74

to drop below 70% of their nominal current-carrying capacity—a typical security75

constraint margin [16], highlighting the need for heatwave-aware grid management.76

National-level impacts vary dramatically: the Spanish grid faces substantial load77

shedding risk under extreme heat, while the German grid demonstrates remarkable78

resilience. While these findings are based on the best available public data, we caution79

that further validation with proprietary grid-specific datasets would strengthen these80

estimations.81

These findings underscore the urgent need for grid operators and policymakers to82

consider the impacts of extreme weather more comprehensively in their planning and83

management strategies. By doing so, they can enhance the reliability and resilience of84

electricity supplies in the face of increasing climate change challenges.85
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Fig. 2: Framework for analyzing heatwave impacts on national power grids. a
Integration of segment-specific conductor thermal modeling, temperature-dependent demand,
weather-dependent renewable generation, and heatwave-induced generation derating to cap-
ture climate-power system interactions. b Proposed iterative algorithm solving temperature-
dependent AC optimal power flow under bias-corrected heatwave projections, identifying
capacity bottlenecks and potential load shedding regions during extreme heat events.

Results86

Setup87

We employ the modeling framework illustrated in Fig. 2a, with data source and88

detailed methods included in Section 1, to evaluate how heatwaves impact existing grid89

operations in European countries under projected future heatwave scenarios. We focus90

our analysis on 2026–2030, a time horizon that reduces uncertainty in both climate91

projections and grid infrastructure configurations while providing actionable insights92

for near-term resilience planning and investment decisions. We conduct optimal power93

flow (OPF) analyses using the proposed iterative algorithms in Fig. 2b, to investigate94

whether national grids exhibit temperature-induced capacity bottlenecks, indicated by95

transmission lines approaching their thermal limits and load-shedding regions—that96

is, buses where power injection fails to meet consumption. Our work also compares the97
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a

Year Wind (m/s) Solar (W/m2) Temp. (℃) Load (GWh)

2026 2.45 (±0.42) 801.91 (±80.03) 38.34 (±2.10) 37.55 (±1.41)
2027 2.88 (±0.34) 777.83 (±100.31) 39.35 (±1.38) 38.37 (±0.85)
2028 2.68 (±0.37) 747.28 (±112.61) 39.26 (±1.95) 38.95 (±1.13)
2029 2.59 (±0.38) 799.91 (±77.69) 39.69 (±1.62) 39.28 (±0.81)
2030 2.66 (±0.37) 781.30 (±89.47) 39.83 (±1.47) 39.56 (±0.74)
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Fig. 3: Comparison of different OPF methods for analyzing the Spanish grid
under projected heatwaves. We compare basic AC-OPF, advanced Quad-OPF, our pro-
posed Iter-OPF, and the most accurate TD-OPF. a Weather and load statistics under
heatwave projections from 2026 to 2030, with 320 scenarios generated using a bias-correction
approach (detailed in Section 1.1). b–c Distributions of estimated line capacity reduction
compared to nominal conditions and line temperatures (derived from heat balance equations)
across different methods. d Distributions of load shedding ratios (demand-generation mis-
match over total demand). e Average per-scenario solving times.

accuracy of existing OPF analysis methods with our proposed approach in identifying98

these critical bottlenecks while satisfying physical constraints.99

Observations100

We find that, as heatwaves simultaneously reduce transmission capacity, cause gen-101

erator derating, and increase cooling demand, some European national grids, such as102

Spain, France, and Italy, exhibit capacity bottlenecks in projected heatwave scenarios,103

subsequently resulting in non-negligible load-shedding and potential human casual-104

ties [17, 18]. This alerting observation emphasizes the need for temperature-aware grid105

analysis and planning to mitigate heatwave risks and ensure energy security. In further106

detail, we have the following observations:107

Existing OPF models overestimate grid resilience under heatwaves108
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We compare four OPF-based approaches: the standard alternating current OPF (AC-109

OPF), a more advanced ACOPF with quadratic approximation of thermal limits110

(Quad-OPF), our proposed iterative framework (Iter-OPF), and the most accurate111

fully converged temperature-dependent ACOPF (TD-OPF). Detailed formulations are112

in Section 1.5 and Supplementary Section 2.113

Conventional methods substantially underestimate heatwave risks. AC-OPF114

neglects thermal limits entirely, while Quad-OPF’s quadratic approximation fails to115

precisely capture the complex nonlinear relationship between temperature and current-116

carrying capacity (Fig.3b). Both methods permit line temperatures to exceed the117

90°C thermal limit (Fig.3c), overestimating transmission capacity and underestimat-118

ing load shedding (Fig.3d). Implementing generation plans based on these methods119

during heatwaves could trigger line shutdowns or even cascading blackouts [17, 18].120

Our Iter-OPF framework addresses these limitations. Like TD-OPF, it correctly121

identifies load shedding regions and maintains safe line temperatures below 90°C.122

Yet while TD-OPF requires over four times the computational cost of AC-OPF123

(Fig. 3e), Iter-OPF achieves comparable accuracy at only twice the cost, enabling reli-124

able resilience assessment across hundreds of weather scenarios for comprehensive grid125

planning.126

Complete thermal modeling is essential for accurate resilience127

assessment under heatwaves128

To assess the importance of different modeling components under heatwaves, we129

conduct an ablation study systematically removing key elements from Iter-OPF:130

conductor thermal models, segment-based modeling, and generator derating (Fig.4a–131

b). We also compare these against the widely used 70% security margin SC-OPF132

approach [16].133

Conductor thermal modeling proves most critical. Removing it substantially134

overestimates grid capacity, while segment-based modeling captures local thermal bot-135

tlenecks that uniform approaches miss (Fig. 4a). Generator derating has comparatively136

smaller impacts on system-level performance.137

The 70% security margin approach [16], though commonly used, only partially138

prevents line overheating (Fig. 4b). This fixed margin cannot avoid thermal viola-139

tions because it neglects spatial heterogeneity in thermal conditions—actual capacity140

can drop near 40% of nominal ratings during extreme heatwaves in localized hotspots141

(Fig.3d). These results demonstrate that explicit temperature-dependent thermal142

modeling is essential; conservative static margins alone are insufficient for reliable143

heatwave resilience assessment.144

Rising demand amplifies grid stress, yet energy storage alone145

offers limited relief146

We assess grid resilience sensitivity to future demand growth and energy storage147

availability. With load growth rates from 1% to 3% annually from 2025, reflecting148

emerging demands from AI infrastructure, electrified heating and cooling, and electric149

vehicles [19, 20], load shedding increases proportionally with demand (Fig. 4c). This150
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Fig. 4: Sensitivity analysis of modeling components and environmental factors on
OPF analysis under heatwaves. a–b Impact of removing different modeling components
from the Iter-OPF framework on load shedding ratios and line temperatures, compared to
the 70% security margin SC-OPF method [16]. c–d Load shedding ratios under different load
growth rates (GR) and energy storage states (i.e., SoC).

positive relationship reveals that rising consumption patterns will directly amplify grid151

stress during heatwaves.152

On the other hand, varying energy storage state-of-charge (SoC) from 0% to 100%153

yields only marginal reductions in load shedding (Fig. 4d). This counterintuitive result154

arises because transmission constraints—not generation capacity—dominate grid vul-155

nerability during extreme heat. Higher storage availability cannot compensate when156

reduced line capacity prevents power delivery from storage units to demand centers.157

This finding indicates that expanding the capacity of existing storage infrastruc-158

ture alone cannot adequately mitigate heatwave impacts. Planning must combine159

transmission upgrades and distributed flexibility to address thermal constraints160

directly.161

Grid vulnerability differs by country and cross-border ties are not162

always helpful163

Grid vulnerability to heatwaves varies dramatically across eight Western European164

countries. French electricity grid shows severe thermal-induced capacity bottlenecks165

during extreme heat, with average load shedding reaching 2% under projected heat-166

waves (Fig.5a), potentially causing widespread power disruptions [17]. In contrast,167

Germany, the UK, and other northern countries maintain full supply without load168

shedding under the same projected scenarios (Fig. 5b).169

Cross-border interconnections provide asymmetric benefits depending on neigh-170

boring grid conditions. France experiences substantial relief from power sharing with171

less-stressed neighbors—load shedding decreases by about 2% when interconnected172
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Fig. 5: National grids in Western Europe, such as France, Italy, and Spain,
exhibit substantial load shedding under projected heatwaves, while other coun-
tries remain resilient. a Average air temperature during the hottest hours in projected
heatwave periods. b Average load shedding across different countries. c Distribution of line
capacity reduction compared to nominal ratings during heatwaves.

with Italy (Fig. 6b,d). Conversely, joint simulations of Spain with Portugal or France173

show minimal relief because France faces similar thermal stress during concurrent174

heatwaves and also because limited transmission capacity constrains power delivery175

to stress centers (Fig. 6a,c). This disparity arises because interconnection effective-176

ness depends on the spatial correlation of climate stress, available surplus capacity in177

neighboring systems, and sufficient transmission infrastructure to deliver power where178

needed.179

These findings highlight that climate-resilient grid planning requires coordinated180

European strategies. Countries facing severe thermal constraints need targeted infras-181

tructure upgrades—particularly transmission capacity and cooling systems—while182

strategic interconnections can provide mutual support where climate impacts are183

spatially decorrelated.184

Broader Implication185

Our findings have immediate implications for European energy policy. Grid operators186

should periodically re-evaluate resilience assessments using temperature-dependent187

methodologies and the latest climate projections. Policymakers should combine188

transmission upgrades in thermally vulnerable corridors—particularly in southern189

Europe—rather than relying solely on storage expansion or demand response. The190

spatial correlation of climate stress across borders further underscores the need for191

pan-European coordination; interconnection benefits depend critically on whether192

neighboring systems face concurrent thermal constraints.193
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Fig. 6: Cross-border interconnections enhance grid resilience by enabling mutual
support during heatwaves. We compare single-country analyses with joint multi-country
analyses under identical heatwave projections to quantify the effects of cross-border inter-
connections on grid resilience. a–b Distribution of Load shedding ratio in Spain and France
across different interconnection scenarios. c–d Distribution of Line capacity reduction in
Spain and France across different interconnection scenarios.

Limitations194

Whilst concerning, we note that our results rely on publicly available datasets for195

European grids, which lack the granular detail accessible to grid operators. Addi-196

tionally, although we use the best currently available locally bias-corrected weather197

projections [21], these remain subject to revision as climate models improve. Simi-198

larly, projecting cooling load patterns involves inherent uncertainties stemming from199

evolving building efficiency standards, air conditioning adoption rates, and demand200

response capabilities.201

We focus on near-term scenarios (2026–2030) to reduce forecasting uncertainty;202

longer-term climate impacts and grid vulnerabilities may be more severe. However,203

future grid evolution—including increased renewable energy penetration, trans-204

mission capacity upgrades, energy storage deployment, and other infrastructure205

improvements—remains uncertain and could substantially alter these vulnerability206

projections [22]. Our analysis, therefore, represents current grid configurations under207

near-term climate scenarios rather than a long-term forecast of grid performance.208

Our iterative algorithm has been validated against the fully converged TD-OPF209

model, demonstrating numerical consistency with the underlying physical models.210

However, the TD-OPF model itself has not been validated against real-world field211

tests of line temperatures during heatwave events. Errors in the underlying physical212

model or biased input data will propagate through our analysis.213
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Given these limitations, grid operators should validate our findings against histori-214

cal outage records and apply our methodology with their proprietary, higher-resolution215

models and real-time operational data for more precise vulnerability assessments.216

Discussion and Conclusion217

Extreme heat poses a compound threat to electrical grids—simultaneously increasing218

cooling demand, reducing generation efficiency, and degrading transmission capacity.219

Yet existing assessment methods fail to capture these coupled dynamics or provide the220

computational efficiency needed for probabilistic analysis across numerous climate sce-221

narios. Current models also overlook the spatially heterogeneous, weather-dependent222

thermal limits along individual transmission line segments.223

We address these gaps with a framework integrating thermal modeling across224

demand, generation, and transmission with geospatially-gridded climate projections.225

Our iterative algorithm efficiently solves the temperature-dependent optimal power226

flow problem while incorporating segment-specific thermal limits, capturing critical227

nonlinear interactions that existing methods miss. Applying this framework to West-228

ern European grids reveals substantial variation in national resilience: Germany’s229

grid can withstand projected extreme heat, while Spain and France face significant230

vulnerability to supply disruptions.231

The heatwave-induced capacity bottlenecks identified by our work can be mit-232

igated through three complementary approaches. First, demand response programs233

in affected load centers can maintain grid integrity, though at the cost of consumer234

inconvenience. Second, reconductoring vulnerable transmission lines—which our anal-235

ysis specifically identifies—can increase capacity and resilience, though this requires236

capital investment and significant lead time. Third, deploying grid-scale storage at237

bottleneck locations could compensate for transmission limits during extreme heat238

events, an approach that warrants investigation as storage costs continue to decline.239

Climate change is accelerating while grid infrastructure evolves slowly. The meth-240

ods and findings presented here provide a foundation for prioritizing adaptation241

investments before the next extreme heatwave tests grid limits. Future work should242

extend our framework to optimize adaptation investments under climate uncertainty,243

incorporating cost-benefit analysis and long-term climate trajectories. Our analysis244

relies on diverse datasets, not all of which are easy to obtain or process, such as245

country-specific calibrated demand models. To support reproducibility and enable246

broader application, we openly share our datasets, algorithms, and source code.247

1 Methods248

Data Sources249

We employed multiple publicly available datasets covering European transmission250

infrastructure, climate conditions, power demand, and renewable generation. The251

European transmission network topology and parameters were derived from PyPSA-252

Eur [16], an open-source model of the European energy system. Algorithm validation253
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used standardized IEEE power flow benchmarks from PGLIB [23]. Historical cli-254

mate data were obtained from ERA5 [24], providing hourly meteorological fields at255

0.25°×0.25° resolution from 1940 to present. Future climate projections were sourced256

from the Copernicus Climate Change Service Energy dataset [25], covering 2005–2100257

with temperature, solar irradiance, and wind velocity fields. Historical electricity258

demand profiles were extracted from ENTSO-E Power Statistics [26]. Weather-259

dependent demand variations were modeled following Demand.ninja [27]. Renewable260

generation potentials and time series were computed using Atlite [28].261

Comprehensive dataset descriptions are provided in Supplementary Table 1.262

Models and Algorithms263

We developed a comprehensive framework to assess transmission grid resilience under264

extreme heatwaves, integrating heatwave projection, demand modeling, and optimal265

power flow analysis. As depicted in Fig. 2, the framework comprises:266

• Future Heatwave Projection (Sec. 1.1): Generates multiple projected heatwave267

events for 2025–2030 based on historical events from 2019 and 2022.268

• Future Demand Modeling (Sec. 1.2): Simulates power demand under varying269

annual growth rates using a weather-dependent model from Demand.ninja [27].270

• Generator Derating Modeling (Sec. 1.3): Quantifies reduced generator effi-271

ciency due to elevated ambient temperatures during heatwaves.272

• Renewable Generation: Calculates renewable generation potential under pro-273

jected weather conditions using Atlite [28].274

• Transmission Line Thermal Modeling (Sec. 1.4): Quantifies temperature275

effects on conductor properties and thermal limits, including multi-bundle line276

derating and segmented analysis to identify localized stress points.277

• Optimal Power Flow Analysis (Sec. 1.5): Integrates these components to sim-278

ulate grid response under thermal and demand stresses, revealing critical capacity279

constraints and vulnerability zones.280

1.1 Future Heatwave Modeling281

We adopt future reference climate variables based on the bias-corrected European282

regional climate model, CORDEX, under the RCP 4.5 scenario for the European283

domain [25]. However, these reference climate data are averaged over three-hour284

intervals and lack prediction uncertainty intervals, thus inadequately capturing285

shorter-duration extreme heat events.286

To address this limitation, we apply a “morphing” approach to artificially create287

future heatwaves based upon historical weather observations [29, 30]. This approach288

preserves the spatial structure and diurnal patterns of historical heatwaves while shift-289

ing the temperature baseline, though it assumes that heatwave dynamics will remain290

qualitatively similar under future climate conditions. This approach has often been291

used for the analysis of building energy use or assessing resilience under different future292

climate scenarios [31].293

We first select temperature profiles from historical heatwave events in the hourly294

ERA5 reanalysis dataset, denoted as T his
heat, and the historical reference temperature295
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Fig. 7: Projected 2030 heatwaves in Spain derived from 2022 observations. a
Morphing approach for projecting future heatwaves. Delta values calculated from a historical
heatwave day are applied to a future reference day to generate projected conditions. Temper-
ature values represent spatial averages across regions. b Spatial characteristics of generated
heatwaves compared to historical events and reference profiles. The morphing approach pre-
serves spatial and temporal patterns from historical events. c Generated 2030 heatwaves
based on delta values from five historical hottest days in July 2022. Profiles for three areas
are shown separately.

data, T his
ref , on the same historical date. To derive the projected future hourly heat-296

wave scenarios T fut
heat from the future reference temperature T fut

ref , we calculate it as297

T fut
heat = T fut

ref +(T his
heat−T his

ref ), where the low-resolution 3-hourly reference data is linearly298

interpolated to generate a complete 24-hour time series for this calculation.299

The projected future heatwave exhibits a similar temperature increase relative300

to the historical reference (Fig 7a) while preserving the spatial features at each301

longitude-latitude grid (Fig 7b). Furthermore, we collect a set of such bias values (i.e.,302

(T his
heat − T his

ref )) based on different historical heatwave records, to present a historical303

distribution of extreme weather patterns (Fig 7c). This approach allows us to capture304

the diversity of potential heatwave manifestations while maintaining their inherent305

spatial characteristics in our future projections.306
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Fig. 8: Heatwave impacts on load demand, generator efficiency, and transmis-
sion capacity. a Calibrated temperature-dependent demand model for Spain following
Demand.ninja [27], where BAIT indicates building-adjusted internal temperature depending
on multiple weather variables. b Generator derating model for various common generators,
where higher ambient temperature induces lower generation efficiency due to different mech-
anisms. c Conductor thermal models based on heat balance equations, where the nominal
current capacity is determined under thermal limits in ambient conditions; as air tempera-
ture increases, the current limits decrease.

1.2 Future Demand Modeling307

We employ a weather-dependent demand model following Demand.ninja [27] to308

simulate future daily demand as follows:309

P d = Pbase + Pheat[Theat − BAIT]+ + Pcool[BAIT− Tcool]
+ + αW + βD + ϵ,

where base load Pbase denotes the base demand (in GW ), Pheat and Pcool are heating310

and cooling coefficients (in GW/◦C), Theat and Tcool are heating and cooling thresholds311

(in ◦C), and BAIT denotes the building-adjusted internal temperature derived from312

[27], which depends on specific weather conditions such as air temperature, relative313

humidity, wind speed, and solar radiation. α is a time-dependent coefficient (in GW ),314

representing the impacts of differences in workdays (W = 1) and weekends (W = 0),315

β (in GW/yr) captures the long-term yearly trends in power demand, and ϵ is the316

model error term. After generating daily power demand, we convert it to an hourly317

resolution based on the historical average hourly demand ratios observed during hot318

days, following [27].319

We follow the methodology [27] to calibrate demand models for EU countries320

in our case study. For future scenarios, we incorporate varying annual growth rates321

(β) to model different load projections. This approach accounts for unprecedented322

grid challenges from AI technologies, smart homes, and electric vehicles, which will323

significantly alter historical demand patterns [19, 20]. By adjusting these growth rates,324

we evaluate grid performance under various electrification scenarios, from moderate325

to aggressive technology adoption.326

1.3 Generator Derating Modeling327

Heatwave-induced high temperatures also derate generator capacity. For renewable328

generators, such as solar generation, the Atlite package [28] is employed to con-329

vert weather data into renewable power generation profiles. For Gas Turbines (GT)330
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and Combined-Cycle Gas Turbines (CCGT), the density of input air decreases with331

increasing ambient temperature, resulting in more fuel needed to compress the same332

amount of air mass [12]. Nuclear power generators experience capacity decreases at333

high temperatures due to their reliance on water cooling systems to prevent overheat-334

ing [32]. For Electric Generators with copper windings, elevated temperatures increase335

winding resistance, inducing Joule heating and reducing efficiency [33]. We then sum-336

marize the capacity derating factor η ≤ 1 for some conventional generators under337

ambient temperatures Tamb using:338

Generator derating η =


(−0.6854Tamb + 110)/100 (GT)

(−0.3427Tamb + 105)/100 (CCGT)

(101.3042–0.1387Tamb–0.0010T
2
amb)/100 (Nuclear)√

(180−Tamb)[1+0.0039(40−20)]
(180−40)[1+0.0039( T amb−20)]

(∀Tamb ≥ 40) (Copper windings)

These coefficients of derating curves depend on the detailed manufacturing configu-339

rations of different generators and can be adjusted under different real-world systems340

[12, 32, 33].341

1.4 Conductor Thermal Modeling342

Heatwaves also reduce transmission capacity in power grids by affecting the thermal343

behavior of overhead conductors. This physical phenomenon can be modeled by the344

steady-state heat balance equation, which accounts for the equilibrium between heat345

generated by electrical current and solar radiation, and heat lost through convection,346

radiation, and conduction.347

Heat Balance Equations348

The standard steady-state heat balance equation according to IEEE Std 738TM-2012349

[1] used in our study is as follows:350

HC +HR︸ ︷︷ ︸
heat loss

= HS +HJ︸ ︷︷ ︸
heat gain

[W/m], (1)

where351

HC = max


3.645ρ0.5f D0.75 (T − Tamb)

1.25 , (zero wind speed) ;

Kϕ

[
1.01 + 1.35N0.52

Re

]
λf (T − Tamb) , (low wind speed) ;

0.754KϕN
0.6
Re λf (T − Tamb) , (high wind speed) ;

HR = πσBDαemi

[
(T + 273)4 − (Tamb + 273)4

]
HS = αabsDS

HJ = I2R(T ) = I2Rref(1 + αr(T − Tref))

Here, given the conductor physical properties (conductor diameter D, emissivity352

factor αemi, absorptivity factor αabs, resistance coefficient αr, unit reference resistance353

Rref) and environmental variables (conductor temperature T , ambient temperature354

Tamb, air density ρf , air thermal conductivity λf , wind angle factor Kϕ, Reynolds355

number NRe, solar radiation S, and constant δB), the heat balance equation solves356

for the equilibrium conductor temperature that balances heat inflow and outflow.357
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The heat transfer components include convective heat loss HC , radiative heat loss358

HR driven by temperature difference, solar heat gain HS , and Joule heat gain HJ359

from conductor current I and temperature-dependent unit resistance R(T ). Detailed360

parameter definitions are provided in Supplementary Table 7.361

For simplicity, we denote the implicit mapping from conductor current to equilib-362

rium conductor temperature as T = H(I,W), where W includes all environmental363

variables shown above, such as air temperature and wind speed. We remark that the364

mapping from current to equilibrium temperature is a single-variable monotonic map-365

ping, i.e., higher current leads to higher conductor temperature given identical weather366

variables. Thus, it can be efficiently solved using the bisection or Newton’s method.367

Multi-Bundle Modeling368

In practice, multi-bundle transmission lines are commonly used for high-voltage trans-369

mission grids, which complicates thermal modeling due to mutual interactions between370

conductor bundles. Conductors within a bundle experience reduced cooling when posi-371

tioned in the wake of neighbors, with finite-element simulations showing temperature372

variations of 5–25℃ between individual bundles in common four-bundle transmission373

lines [34]. Two simplified modeling approaches are commonly used. Individual conduc-374

tor modeling treats each bundle independently, overestimating capacity by neglecting375

mutual thermal shielding [16]. Merged conductor modeling combines bundles into a376

single equivalent line, underestimating capacity by ignoring inter-bundle convective377

cooling.378

Following finite-element analysis results showing 5–25℃ temperature elevations379

in shielded conductors within four-bundle configurations [34], we apply a reduction380

factor of 0.8 to convective and radiative cooling terms as 0.8(HC + HR) = HS +381

HJ . Specifically, under worst-case ambient conditions (0.6 m/s wind, 900 W/m² solar382

irradiance) [35], this predicts the 90℃ thermal limit at 25℃ ambient temperature,383

falling between the two simplified approaches with approximately 15℃ difference from384

the optimistic individual conductor model, consistent with finite-element simulations385

showing temperature variations of 5–25℃ [34]. This approximation captures inter-386

bundle thermal shielding effects without requiring computationally expensive finite-387

element simulations for each line segment.388

Multi-Segment Modeling389

Heatwaves further induce spatially heterogeneous effects on grid transmission capacity,390

especially for long-distance transmission lines. To capture these varied impacts, we391

compute the intersection of transmission lines with grid lines embedded in weather392

datasets such as ERA5 (see Fig. 1b). Segments within a single grid cell share the power393

flow and current, but have different resistances due to thermal effects under various394

local weather conditions, such as wind speed and solar radiation. For each link, the395

multi-segment model satisfies the following equations:396

Heat balance equations Tl,s = H(Il,Wl,s), ∀s ∈ Sl (2)

Conductor thermal limits Tl,s ≤ Tmax, ∀s ∈ Sl (3)

Transimision line resistance Rl =
∑
s∈Sl

dl,s ·R(Tl,s), (4)
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The conductor temperature for each segment s ∈ Sl from line l in Equation (2) is397

derived from the heat balance equation (Equations (1)) based on local weather condi-398

tions. Segment temperature Tl,s is constrained by the transmission line’s thermal limit399

Tmax (e.g., 90℃ for ACSR conductors) in Equation (3). The total line resistance equals400

the sum of segment resistances as shown in Equation (4), where dl,s is the segment’s401

length and R(T ) is the temperature-dependent unit resistance. Consequently, branch402

flow is limited by the segment with the highest temperature. This approach is com-403

patible with any gridded weather dataset, allowing our segmented transmission model404

to automatically improve in accuracy as weather data becomes more fine-grained.405

The comprehensive formulations and discussions for the above thermal models are406

included in Supplementary Section 4.4.407

1.5 Optimal Power Flow Analysis408

The Optimal Power Flow (OPF) problem is a fundamental component in electricity409

grid operations and vulnerability analysis. It aims to determine the most efficient oper-410

ating conditions for an electrical power system, ensuring that power generation meets411

the demand while minimizing operational costs and adhering to system constraints.412

For different planning horizons, power grid optimization can be categorized into413

three types: (1) planning problem, which addresses long-term infrastructure devel-414

opment decisions over years to decades; (2) short-term set-point dispatching, which415

focuses on day-ahead to hour-ahead scheduling of generation resources; and (3)416

real-time control, which manages immediate system adjustments within minutes to417

maintain stability and reliability. Each timescale presents distinct objectives, con-418

straints, and computational requirements while sharing the fundamental goal of419

optimal resource allocation.420

In the context of grid vulnerability analysis, we employ hourly single-snapshot421

OPF simulations to systematically identify grid bottlenecks during extreme weather422

events. By solving the OPF problem at each hour during extreme periods, we can423

pinpoint transmission lines, generators, and other components that consistently reach424

their operational limits, representing critical vulnerabilities in the system. This tem-425

poral granularity allows us to capture the dynamic nature of both electricity demand426

patterns and environmental impacts, particularly during heatwaves when thermal427

constraints become increasingly binding.428

We first introduce the standard single-snapshot alternating-current OPF (AC-429

OPF) problem in Sec. 1.5 and extend to include conductor thermal modeling in430

Sec. 1.5, contingency security constraints in Sec. 1.5, and optimization with storage431

units in Sec. 1.5.432

Baseline OPF Methods. To our knowledge, the most standard OPF formulation433

based on the Alternating Current (AC) model is AC Optimal Power Flow (AC-OPF)434

[36]. It is a non-linear, constrained optimization problem that incorporates both the435

physical laws governing power flow and the operational limits of the grid compo-436

nents. Given hourly load demand {P d,Qd} and grid parameters, we solve the power437

generation {P ,Q} and complex-form voltage {V } as follows:438

AC-OPF: min
∑
i∈N

∑
k∈Gi

ci,k · Pi,k, (5)
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s.t.

Power flow balance


∑

k∈Gi
Pi,k − P d

i = re
(
Vi(

∑
j∈N YijVj)

∗
)

∑
k∈Gi

Qi,k −Qd
i = im

(
Vi(

∑
j∈N YijVj)

∗
) , ∀i ∈ N , (6)

Line power flow limits |Vi
((
Vi − Vj

)
Yij

)∗ | ≤ Smax
ij , ∀(i, j) ∈ L, (7)

Generations limits Pi,k ∈ [Pmin
i,k , Pmax

i,k ], Qi,k ∈ [Qmin
i,k , Qmax

i,k ], ∀i ∈ N , ∀k ∈ Gi, (8)

Voltage limits |Vi| ∈ [V min
m , V max

m ], |∠Vij | ≤ V max
a , ∀i ∈ N , ∀(i, j) ∈ L, (9)

var. P ,Q, and V .

The objective function in (5) represents total generation cost, calculated as a lin-439

ear function of power generation and individual generator costs (ci,k). The non-linear440

power flow balance constraints in (6) ensure power injection and load are balanced at441

each bus, where Yij is the transmission line admittance. The line flow limits (Smax
ij ) in442

(7) enforce thermal limits of transmission lines under static conditions. Operating lim-443

its for power generation (Pmin
i,k , Pmax

i,k , Qmin
i,k , Qmax

i,k ), voltage magnitude (V min
m , V max

m ),444

and voltage angles (V max
a ) are specified in (8)–(9).445

Compared with Linear or DC-OPF formulations [37], which neglect temperature-446

dependent resistance and Joule heating losses in transmission lines, AC-OPF more447

accurately captures the physical behavior of power transmission systems [38] and448

enables the incorporation of heat flow analysis.449

OPF under Heatwaves. Standard AC-OPF neither incorporates the impact of450

weather on the electrical network’s parameters, such as resistance, nor the dynamic451

thermal limits of transmission lines. Temperature-Dependent AC Optimal Power Flow452

(TD-OPF) [14, 38, 39] extends it by incorporating heat flow equations and temperature453

constraints in Sec. 1.4. AC-based TD-OPF is formulated as follows:454

TD-OPF: min (5)

s.t.

ACOPF constraints (6)− (9),

Heat flow constraints (2)− (4), ∀l = (i, j) ∈ L,
Line current flow Il = |(Vi − Vj)Yij |, ∀l = (i, j) ∈ L, (10)

Line admittance Yl = 1/(Rl + i ·Xl), ∀l = (i, j) ∈ L, (11)

var. P ,Q, and V .

In this formulation, standard AC-OPF constraints and heat flow constraints are455

coupled through line current magnitude in (10) and temperature-dependent line admit-456

tance in (11), where Rl is the line resistance and Xl is the line reactance. The current457

flow generates Joule heating HJ , which increases conductor temperatures. The con-458

straints from (2) to (4) model heat transfer in individual transmission line segments459

under varying local weather conditions, ensuring permissible steady-state conductor460

temperatures that determine line current-carrying capacities. The interdependence of461

electrical and thermal constraints in the TD-OPF model more accurately captures462

physical grid behavior than linearized models during heatwaves.463

Load Shedding Analysis. We implement all operational constraints as hard con-464

straints in our optimization formulation, ensuring that transmission line flows cannot465

exceed the specified limits (whether 70% or 100% of thermal capacity). To assess grid466
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bottlenecks under safety operation conditions, we introduce slack variables represent-467

ing load shedding in the power balance equations and add a large penalty term for468

load shedding in the objective function. This approach allows the model to identify469

when and where the grid cannot meet demand while respecting security constraints,470

providing quantitative measures of grid vulnerability during heatwave events.471

Security Contingency Analysis. Beyond modeling weather-induced thermal472

limits in AC-based TD-OPF, N-1 security constraints are widely implemented to473

enhance grid operation robustness by ensuring system stability following any single474

line outage [40]. These constraints require that all operational limits remain satisfied in475

both the base case and all post-contingency states. The base case and post-contingency476

states are coupled through generator ramping constraints: preventive formulations fix477

real power generation dispatch across all states, while corrective formulations permit478

decision variables to adjust within prescribed ranges following contingency occurrence.479

Computational complexity scales linearly with the number of contingencies,480

motivating research into simplified security constraint formulations. Two common481

approaches prevail in the literature. The first applies a fixed percentage reduction (e.g.,482

70%) to thermal limits within AC-OPF models, establishing implicit safety margins483

without explicit contingency enumeration [37]. The second integrates linearized secu-484

rity constraints based on Line Outage Distribution Factors (LODFs) to approximate485

contingency impacts within DC-OPF frameworks [41].486

We adopt different approaches depending on system scale and data availability.487

For the IEEE 30-bus test system (Supplementary Section 3), we implement standard488

N-1 preventive security-constrained AC-OPF under heatwave conditions, leveraging489

its complete topology and system parameters while maintaining computational feasi-490

bility. For larger-scale European country-level analysis, we adopt the established 70%491

fixed security margin approach from PyPSA-Eur [37]. This choice reflects two practi-492

cal constraints: network clustering introduces an incomplete topology that precludes493

rigorous contingency definition, and explicit contingency modeling at a continental494

scale imposes a prohibitive computational burden for AC-based formulations.495

Impact of Storage and State of Charge. The expanding deployment of dis-496

tributed energy storage offers potential for mitigating local capacity constraints and497

absorbing renewable generation variability through strategic charging and discharg-498

ing. However, directly incorporating these temporal dynamics into AC-based TD-OPF499

presents significant methodological challenges: Solutions become dependent on state-500

of-charge initialization, require extended time horizons spanning days to years to501

capture storage behavior under variable weather conditions, and substantially increase502

computational complexity.503

To balance analytical rigor with computational tractability, we adopt a simplified504

approach. Using existing storage infrastructure configurations from PyPSA-Eur-505

derived grid data (see Supplementary Table 5 for details), we implement a baseline506

scenario assuming 50% initial state of charge—a moderate assumption representing507

typical operational conditions. We complement this baseline with comprehensive sen-508

sitivity analyses across the full range of storage states (0%–100%) to characterize how509

storage availability affects system vulnerability. Results show that even at 100% state510
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of charge, storage provides only marginal relief from load shedding (Fig. 4d), indicat-511

ing that transmission constraints—not storage capacity—dominate grid vulnerability512

during extreme heat. Under this framework, storage units function as dispatchable513

generators in our single-snapshot analysis of extreme heatwave conditions.514

The comprehensive problem formulations for different OPF problems are included515

in Supplementary Section 2.516

1.6 Algorithm Design517

For standard AC-OPF, Interior Point Methods (IPMs) have demonstrated effective-518

ness across various IEEE test scenarios [23, 42]. Extending these methods to solve519

AC-based TD-OPF markedly increases complexity due to the interdependence of520

electrical and thermal constraints.521

Existing Algorithms522

Existing studies adopt different approximation methods to solve AC-based TD-OPF523

• Linear approximation (DC-OPF and TD-DC-OPF): This approach linearizes the524

nonlinear constraints in AC-OPF and incorporates weather-dependent dynamic line525

ratings [13, 14, 43]. However, it generally overlooks the interactions between heat526

flow and power flow, leading to substantial inaccuracies in the resolved power flows.527

• Quadratic approximation (Quad-OPF): It uses a quadratic function to estimate528

steady-state conductor temperature [15], expressed as Tc ≈ β0 + β1I
2 + β2I

4
529

with weather-dependent coefficients {β0, β1, β2}. This simplified version of the heat530

balance equation is then integrated into the standard AC-OPF model.531

While these approximations enhance computational efficiency, they often fail to fully532

satisfy physical constraints on heat and power balance equations, particularly under533

stringent temperature-induced thermal constraints. These methods frequently over-534

look potential capacity constraints, resulting in inaccuracies when evaluating grid535

performance under extreme weather scenarios.536

Despite these advancements, developing an efficient algorithm capable of solv-537

ing AC-based TD-OPF models while satisfying all physical constraints has been a538

significant gap that we address in this work.539

Proposed Iterative Analysis (Iter-OPF)540

In this work, we propose a novel iterative framework for efficiently solving AC-based541

TD-OPF. As illustrated in Figure 2b and detailed in Algorithm 1, this algorithm542

employs two key steps that improve computational efficiency and solution accuracy.543

• First, we convert steady-state conductor temperature constraints into equivalent544

conductor current constraints based on local segment weather conditions [13, 43]:545

Imax
l,s =

√
(HC +HR −HS)/(R(Tmax)), ∀l = (i, j) ∈ L, ∀s ∈ Sl (12)

Il = |(Vi − Vj)Yij | ≤ min
s∈Sl

{Imax
l,s }, ∀l = (i, j) ∈ L (13)
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Algorithm 1 Iter-OPF Analysis

Data: Weather data, conductor thermal model, and power grid model.
Result: Grid operational states under heatwaves.

1 For each segment, given the gridded weather data, transform the temperature limit to the
current constraint as Equation (12).

2 For each line, select the minimum current limit among segments as the line current constraint
as Equation (13).

3 while conductor temperature not converge do
4 Update temperature-dependent admittance for every segment as Equation (11).
5 Aggregate segment admittance into line admittance as Equation (4).
6 Solve AC-OPF with updated admittance and current constraints (13) via IPOPT.
7 Update the line current derived from the OPF analysis as Equation (10).
8 Solve heat flow equations in (1) for all segments via Bisection methods.
9 Update the segment temperature derived from heat flow equations.

10 end

This strictly enforces line thermal limits under temperature conditions while elim-546

inating explicit steady-state temperature expressions, effectively decoupling heat547

and power balance equations.548

• inspired by decoupling approaches for TD power flow equations [38, 44], we develop549

an alternating update mechanism where (i) AC-OPF is solved with additional cur-550

rent constraints from (13) and (ii) heat balance calculations are conducted in parallel551

for each segment. Empirical evaluations indicate that two iterations typically achieve552

results within 0.1% of fully converged solutions for both load shedding and line553

temperature metrics.554

By decoupling heat and power balance constraints, our algorithm enables flexible555

and precise assessment of grid conditions under diverse thermal and electrical proper-556

ties. This approach fills a critical gap in OPF studies by efficiently solving AC-based557

TD-OPF while maintaining physical accuracy, thereby enabling rigorous grid analysis558

for policy decisions during extreme weather events. As climate variability increasingly559

threatens grid stability, such tools become essential for utilities to predict and mitigate560

thermal stress on transmission systems.561

European Simulation Overview562

To investigate European electricity grid resilience under projected future heatwaves,563

we integrate grid and weather data using our modeling framework to conduct OPF564

analysis for Western Europe, with detailed settings in Supplementary Section 4.565

We focus on eight Western European countries (Spain, Portugal, France, Italy,566

Germany, Belgium, the Netherlands, and the UK) impacted by historically recorded567

heatwaves in 2019 and 2022 (Supplementary Table 3). Using the PyPSA-Eur frame-568

work, we derive the power grid configurations detailed in Supplementary Table 4 and569

Supplementary Table 5.570

For network resolution, we adopt a clustered grid that merges nearby buses and571

lines to mitigate local modeling inaccuracies, such as mis-assignment of loads and572
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under-representation of underground cabling, reducing error-induced bottlenecks [16].573

All under-construction lines are included to enhance grid connectivity and provide a574

more optimistic assessment of capacity under stress [16]. We standardize transmission575

lines to “Al/St 240/40 4-bundle 380.0” (Aluminium/Steel cross-section 240/40 mm2, 4-576

bundle configuration at 380 kV) [16, 45]. Thermal limits are set at 90℃ for Aluminum-577

type conductors, within the typical 80–120℃ operating range [15, 35, 46–49].578

Since PyPSA-Eur data are designed for DC/linear dispatch models, we augment579

them for OPF simulations. Voltage magnitude is constrained to 0.95 ≤ Vm ≤ 1.05580

following grid standards [23]. Reactive power demand is set proportional to active581

power (Qd = 0.15 · Pd) following EnerPol recommendations [50]. We relax other AC-582

OPF constraints, such as reactive generation capacity and branch phase angle limits,583

as this information is not available in existing generator profiles [13].584

In summary, our model adopts a conservative approach by using an aggregated585

network topology with relaxed constraints, enabling exploration of upper limits of586

grid performance and identification of potential bottlenecks under extreme conditions.587

These insights pinpoint areas requiring more stringent controls under actual opera-588

tion. Our framework can also incorporate additional constraints with realistic data for589

more accurate evaluations, as demonstrated by exact solutions for the IEEE 30-bus590

benchmark (Supplementary Section 3) alongside the EU analysis.591
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